Skip to main content

Advertisement

Log in

Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In particular, the dye-sensitised solar cells (DSSCs) have a high potential in the rational energy conversion efficiency to secure our sustainable energy source. In the present study, advanced radio frequency (RF) magnetron sputtering technique was applied to incorporate titanium dioxide (TiO2) dopants into reduced graphene oxide (rGO) nanosheet for improving the power conversion efficiency (PCE) of DSSCs device. An optimum TiO2 content incorporated onto rGO nanosheet plays an important role in improving the PCE of DSSCs by minimising the recombination losses of photo-induced charge carriers. Based on the results obtained, 40-s sputtering duration for incorporating TiO2 dopants onto rGO nanosheet exhibits a maximum PCE of 8.78% than that of pure rGO film (0.68%). In fact, the presence of optimum content of TiO2 dopants within rGO nanosheet could act as mediators for efficient separation photo-induced charge carriers. However, the excessive of sputtering duration (e.g. 60 s) of TiO2 dopants onto rGO nanosheet results higher charge recombination and lowers the PCE of DSSCs (5.39%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen B, Sha J, Li W, He F, Liu E, Shi C. Graphene oxide-assisted synthesis of microsized ultrathin single-crystalline anatase TiO2 nanosheets and their application in dye-sensitized solar cells. ACS Appl Mater Interfaces. 2016;8(4):2495.

    Article  CAS  Google Scholar 

  2. Lim SP, Pandikumar A, Huang NM, Lim HN. Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int J Energy Res. 2015;39(6):812.

    Article  CAS  Google Scholar 

  3. Tang YB, Lee CS, Xu J, Liu ZT, Chen ZH, He Z. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano. 2010;4(6):3482.

    Article  CAS  Google Scholar 

  4. Guo J, Li Y, Zhu S, Chen Z, Liu Q, Zhang D. Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water. Rsc Adv. 2012;2(4):1356.

    Article  CAS  Google Scholar 

  5. Low FW, Lai CW. Recent developments of graphene–TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: a review. Renew Sustain Energy Rev. 2018;82(1):103.

    Article  CAS  Google Scholar 

  6. Chang BYS, Huang NM, An’amt MN, Marlinda AR, Norazriena Y, Muhamad MR. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. Int J Nanomed. 2012;7:3379.

    CAS  Google Scholar 

  7. Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B. One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J Alloys Compd. 2014;582:236.

    Article  CAS  Google Scholar 

  8. Shen J, Yan B, Shi M, Ma H, Li N, Ye M. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem. 2011;21(10):3415.

    Article  CAS  Google Scholar 

  9. Zhang Y, Zhang N, Tang ZR, Xu YJ. Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys Chem Chem Phys. 2012;14(25):9167.

    Article  CAS  Google Scholar 

  10. Liu Y. Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Adv. 2014;4(68):36040.

    Article  CAS  Google Scholar 

  11. Ha NT, Long PD, Trung NT, Hong LV. Graphene effect on efficiency of TiO2-based dye sensitized solar cells (DSSC). Commun Phys. 2016;26(1):43.

    Article  Google Scholar 

  12. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev. 2012;41(2):782.

    Article  CAS  Google Scholar 

  13. Chong SW, Lai CW, Hamid SBA. Green preparation of reduced graphene oxide using a natural reducing agent. Ceram Int. 2015;41(8):9505.

    Article  CAS  Google Scholar 

  14. Sun S, Gao L, Liu Y. Enhanced dye-sensitized solar cell using graphene–TiO2 photoanode prepared by heterogeneous coagulation. Appl Phys Lett. 2010;96(8):083113.

    Article  Google Scholar 

  15. Zhu M, Li X, Liu W, Cui Y. An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes. J Power Sources. 2014;262:349.

    Article  CAS  Google Scholar 

  16. Zhang Y, Wang C, Yuan Z, Zhang L, Yin L. Reduced graphene oxide wrapped mesoporous hierarchical TiO2–CdS as a photoanode for high-performance dye-sensitized solar cells. Eur J Inorg Chem. 2017;2017(16):2281.

    Article  CAS  Google Scholar 

  17. He Z, Guai G, Liu J, Guo C, Loo JSC, Li CM, Tan TTY. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. Nanoscale. 2011;3(11):4613.

    Article  CAS  Google Scholar 

  18. Fan J, Liu S, Yu J. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J Mater Chem. 2012;22(33):17027.

    Article  CAS  Google Scholar 

  19. Zhao J, Wu J, Yu F, Zhang X, Lan Z, Lin J. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochim Acta. 2013;96:110.

    Article  CAS  Google Scholar 

  20. Low FW, Lai CW, Hamid SBA. Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceram Int. 2017;43(1):625.

    Article  CAS  Google Scholar 

  21. Shu W, Liu Y, Peng Z, Chen K, Zhang C, Chen W. Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method. J Alloys Compd. 2013;563:229.

    Article  CAS  Google Scholar 

  22. Kim H-N, Yoo H, Moon JH. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement. Nanoscale. 2013;5(10):4200.

    Article  CAS  Google Scholar 

  23. Tang B, Hu G. Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. J Power Sources. 2012;220:95.

    Article  CAS  Google Scholar 

  24. Low FW, Lai CW, Hamid SBA. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram Int. 2015;41(4):5798.

    Article  CAS  Google Scholar 

  25. Low FW, Lai CW, Hamid SBA. Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. J Mater Sci Mater Electron. 2017;28(4):3819.

    Article  CAS  Google Scholar 

  26. Nouri E, Mohammadi MR, Lianos P. Impact of preparation method of TiO2–RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochim Acta. 2016;219:38.

    Article  CAS  Google Scholar 

  27. Babu SG, Vinoth R, Kumar DP, Shankar MV, Chou H-L, Vinodgopal K. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p–n heterojunction for increased hydrogen production. Nanoscale. 2015;7(17):7849.

    Article  CAS  Google Scholar 

  28. Song J, Yin Z, Yang Z, Amaladass P, Wu S, Ye J. Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction. Chem A Eur J. 2011;17(39):10832.

    Article  CAS  Google Scholar 

  29. Tang B, Hu G, Gao H, Shi Z. Three-dimensional graphene network assisted high performance dye sensitized solar cells. J Power Sources. 2013;234:60.

    Article  CAS  Google Scholar 

  30. Cheng G, Akhtar MS, Yang O-B, Stadler FJ. Novel preparation of anatase TiO2@ reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Appl Mater Interfaces. 2013;5(14):6635.

    Article  CAS  Google Scholar 

  31. Xiang Q, Yu J, Jaroniec M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale. 2011;3(9):3670.

    Article  CAS  Google Scholar 

  32. Haldorai Y, Rengaraj A, Kwak CH, Huh YS, Han Y-K. Fabrication of nano TiO2@ graphene composite: reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. Synth Met. 2014;198:10.

    Article  CAS  Google Scholar 

  33. Tsai TH, Chiou SC, Chen SM. Enhancement of dye-sensitized solar cells by using graphene–TiO2 composites as photoelectrochemical working electrode. Int J Electrochem Sci. 2011;6(8):3333.

    CAS  Google Scholar 

  34. Shanmugam M, Durcan C, Gedrim RJ, Bansal T, Yu B. Oxygenated-graphene-enabled recombination barrier layer for high performance dye-sensitized solar cell. Carbon. 2013;60:523.

    Article  CAS  Google Scholar 

  35. Lai CW, Low FW, Chong SW, Wong PPC, Siddick BM, Siti Z. An overview: recent development of titanium dioxide loaded graphene nanocomposite film for solar application. Curr Org Chem. 2015;19(19):1882.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University Malaya Prototype Grant (No. RU005G-2016), the Transdisciplinary Research Grant Scheme, TRGS (No. TR002A-2014B), the University Malaya Research Grant (No. RP045B-17AET) and the Global Collaborative Programme-SATU Joint Research Scheme from the University of Malaya (No. ST007-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Wei Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, F.W., Lai, C.W., Lee, K.M. et al. Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Met. 37, 919–928 (2018). https://doi.org/10.1007/s12598-018-1064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1064-4

Keywords

Navigation