Skip to main content

Advertisement

Log in

Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ternary direct dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst was successfully prepared by hydrothermal method. The composite photocatalysts exhibited high photocatalytic performance on both Cr(VI) reduction and tetracycline (TC) degradation under the irradiation of visible light. The results manifested that the photogenerated charge transfer efficiency was improved after forming the dual Z-scheme heterojunction. As a result, the composite catalysts exhibited higher photocatalytic degradation efficiency than the corresponding single samples. The apparent rate constant (k) value of the best sample BBS-3 for TC degradation was 0.0403 min−1, which was 40 times, 8 times, and 18 times higher than that of single samples. While the k value of BBS-3 for the Cr(VI) reduction was 0.0249 min−1, it was about 23 times, 7 times, and 18 times that of single catalysts. Recycle experiments indicated that the BBS-3 had good photocatalytic stability. Meanwhile, the possible mechanism on Cr(VI) reduction and TC degradation was proposed based on the experimental results.

Graphical abstract

摘要

采用水热法制备了三元直接双Z型Bi3TaO7/Bi2S3/SnS2光催化剂。复合光催化剂在可见光照射下对Cr(VI)的还原和TC的降解均表现出良好的光催化性能。结果表明, 形成双Z型异质结后, 光生电荷转移效率得到了提高。结果表明, 复合催化剂的光催化降解效率高于相应的单一样品。最佳样品BBS-3氧化TC的表观速率常数k值为0.0403 min-1, 比相应的单一样品分别高40倍、8倍和18倍。而BBS-3对Cr(VI)还原的k值为0.0249 min-1, 约为单一催化剂的23倍、7倍和18倍。重复实验表明, BBS-3具有良好的光催化稳定性。同时, 根据实验结果提出了Cr(VI)还原和TC氧化的可能机理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou SQ, Wang Y, Zhou K, Ba DY, Ao YH, Wang PF. In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation. Chin Chem Lett. 2021;32(7):2179.

    Article  CAS  Google Scholar 

  2. Lu Y, Zhan H, Fan DQ, Chen ZP, Yang XF. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. J Hazard Mater. 2022;423:127.

    Google Scholar 

  3. Li KY, Chen J, Ao YH, Wang PF. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep Purif Technol. 2021;259:118177.

    Article  CAS  Google Scholar 

  4. Lu Y, Cui XK, Zhao CX, Yang XF. Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction. WSE. 2020;13(4):299.

    Google Scholar 

  5. Gao X, Chen J, Che H, Ao YH, Wang PF. Rationally constructing of a novel composite photocatalyst with multi charge transfer channels for highly efficient sulfamethoxazole elimination: mechanism, degradation pathway and DFT calculation. Chem Eng J. 2021;426:131585.

    Article  CAS  Google Scholar 

  6. Fan DQ, Lu Y, Zhang Y, Xu HL, Lu CH, Tang YC, Yang XF. Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl Catal B. 2021;295:120285.

    Article  CAS  Google Scholar 

  7. Wang JF, Chen J, Wang PF, Hou J, Wang C, Ao YH. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl Catal B. 2018;239:578.

    Article  CAS  Google Scholar 

  8. Cao SW. Two-dimensional gersiloxenes with tunable band gap as new photocatalysts. Rare Met. 2020;39(6):610.

    Article  CAS  Google Scholar 

  9. Liu X, Huang WY, Zhou Q, Chen XR, Yang K, Li D, Dionysiou DD. Ag-decorated 3D flower-like Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants. Rare Met. 2021;40(5):1086.

    Article  CAS  Google Scholar 

  10. Ren ML, Chen J, Wang PF. Hou J, Qian J, Wang C, Ao YH, Construction of silver iodide/silver/bismuth tantalate Z-scheme photocatalyst for effective visible light degradation of organic pollutants. J Colloid Interface Sci. 2018;532:190.

    Article  CAS  Google Scholar 

  11. Le SK, Li WJ, Wang YJ, Jiang X, Yang XX, Wang XJ. Carbon dots sensitized 2D–2D heterojunction of BiVO4/Bi3TaO7 for visible light photocatalytic removal towards the broad-spectrum antibiotics. J Hazard Mater. 2019;376:1.

    Article  CAS  Google Scholar 

  12. Ren ML, Ao YH, Wang PF, Wang C. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chem Eng J. 2019;378:122122.

    Article  CAS  Google Scholar 

  13. Luo BF, Chen M, Zhang ZY, Hong Y, Lv TT, Shi WD. Characterization and photocatalytic activity of Bi3TaO7 prepared by hydrothermal method. J Solid State Chem. 2017;256:203.

    Article  CAS  Google Scholar 

  14. Guo Y, Ao YH, Wang PF, Wang C. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl Catal B. 2019;254:479.

    Article  CAS  Google Scholar 

  15. Li X, Liu HL, Luo DL, Li JT, Huang Y, Li HL, Fang YP, Xu YH, Zhu L. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J. 2012;180:151.

    Article  CAS  Google Scholar 

  16. Shi HX, Zhao YY, Fan J, Tang ZS. Construction of novel Z-scheme flower-like Bi2S3/SnIn4S8 heterojunctions with enhanced visible light photodegradation and bactericidal activity. Appl Surf Sci. 2019;465:212.

    Article  CAS  Google Scholar 

  17. Jin JR, He T. Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl Surf Sci. 2017;394:364.

    Article  CAS  Google Scholar 

  18. Yang LX, Sun WS, Luo SL, Luo Y. White fungus-like mesoporous Bi2S3 ball/TiO2 heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI) contaminated water. Appl Catal B. 2014;156–157:25.

    Article  CAS  Google Scholar 

  19. Liu Y, Shi YD, Liu X, Li HX. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Appl Surf Sci. 2017;396:58.

    Article  CAS  Google Scholar 

  20. Ji Y, Lou LJ, Ding WC, Hu JK, Shao ML, Wang Q, Zhang Y, Cong YQ. Construction of 3D leaf-like Bi2O3-Bi2S3 nanosheets on Fe2O3 nanofilms and its photoelectrocatalytic performance. Electrochim Acta. 2019;313:282.

    Article  CAS  Google Scholar 

  21. Zhang ZJ, Wang WZ, Wang L, Sun SM. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. Acs Appl Mater Inter. 2012;4(2):593.

    Article  CAS  Google Scholar 

  22. Xu XM, Meng LJ, Li Y, Sun C, Yang SG, He H. Bi2S3 nanoribbons-hybridized 001 facets exposed Bi2WO6 ultrathin nanosheets with enhanced visible light photocatalytic activity. Appl Surf Sci. 2019;479:410.

    Article  CAS  Google Scholar 

  23. Zhang CY, Wang WN, Zhao ML, Zhang J, Zha ZB, Cheng S, Zheng HW, Qian HS. Construction of ZnxCd1-xS/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities. J Colloid Interf Sci. 2019;546:303.

    Article  CAS  Google Scholar 

  24. Wang H, Yuan XZ, Wu Y, Zeng GM, Dong HR, Chen XH, Leng LJ, Wu ZB, Peng LJ. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for theremoval of tetracycline from wastewater by integrated adsorptionand visible-light-driven photocatalysis. Appl Catal B. 2016;186:19.

    Article  CAS  Google Scholar 

  25. Chen DD, Fang JZ, Lu SY, Zhou GY, Feng WH, Yang F, Chen Y, Fang ZQ. Fabrication of Bi modified Bi2S3 pillared g-C3N4 photocatalyst and its efficient photocatalytic reduction and oxidation performances. Appl Surf Sci. 2017;426:427.

    Article  CAS  Google Scholar 

  26. Zhu CZ, Gong TT, Xian QM, Xie JM. Graphite-like carbon nitride coupled with tiny Bi2S3 nanoparticles as 2D/0D heterojunction with enhanced photocatalytic activity. Appl Surf Sci. 2018;444:75.

    Article  CAS  Google Scholar 

  27. Huang DL, Chen S, Zeng GM, Gong XM, Zhou CY, Cheng M, Xue WJ, Yan XL, Li J. Artificial Z-scheme photocatalytic system: what have been done and where to go? Coord Chem Rev. 2019;385:44.

    Article  CAS  Google Scholar 

  28. Liu Y, Wang H, Yuan XZ, Wu Y, Wang HJ, Tan YZ, Chew JW. Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catalysis. 2021;1(1):44.

    Article  Google Scholar 

  29. Wang J, Zhang YN, Wang XX, Su WY. Simultaneous enhancements in photoactivity and anti-photocorrosion of Z-scheme Mn0.25Cd0.75S/WO3 for solar water splitting. Appl Catal B. 2020;268:118444.

    Article  CAS  Google Scholar 

  30. Mu RH, Ao YH, Wu TF, Wang C, Wang PF. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J Alloys Compd. 2020;812:151990.

    Article  CAS  Google Scholar 

  31. Syed A, Marraiki N, Al-Rashed S, Elgorban AM, Yassin MT. A potent multifunctional MnS/Ag-polyvinylpyrrolidone nanocomposite for enhanced detection of Hg2+ from aqueous samples and its photocatalytic and antibacterial applications. Spectrochim Acta A. 2021;244:118844.

    Article  CAS  Google Scholar 

  32. Wang XW, Cao ZQ, Zhang Y, Xu HP, Cao SS, Zhang RB. All-solid-state Z-scheme Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous evolution of H2 and O2. Chem Eng J. 2020;385:123782.

    Article  Google Scholar 

  33. Huo Y, Yang Y, Dai K, Zhang JF. Construction of 2D/2D porous graphitic C3N4/SnS2 composite as a direct Z-scheme system for efficient visible photocatalytic activity. Appl Surf Sci. 2019;481:1260.

    Article  CAS  Google Scholar 

  34. Zhao WH, Wei ZQ, Zhang L, Wu XJ, Wang X. Cr doped SnS2 nanoflowers: preparation, characterization and photocatalytic decolorization. Mater Sci Semicond Proc. 2018;88:173.

    Article  CAS  Google Scholar 

  35. Zhou XS, Qiu YL, Yang GL, Ning XM, Zhan L, Ma L, Xu XY, Luo J. Employing noble-metal-free LaCoO3 as a highly efficient co-catalyst to boost visible-light photocatalytic tetracycline degradation over SnS2. J Taiwan Inst Chem E. 2019;100:194.

    Article  CAS  Google Scholar 

  36. Mohan Kumar G, Cho HD, Ilanchezhiyan P, Siva C, Ganesh V, Yuldashev Sh, Madhan Kumar A, Kang TW. Evidencing enhanced charge-transfer with superior photocatalytic degradation and photoelectrochemical water splitting in Mg modified few-layered SnS2. J Colloid Interf Sci. 2019;540:476.

    Article  CAS  Google Scholar 

  37. Liu MP, Wang R, Liu B, Guo F, Tian LH. Carbon quantum dots@Pd-SnS2 nanocomposite: the role of CQDs@Pd nanoclusters in enhancing photocatalytic reduction of aromatic nitro compounds. J Colloid Interf Sci. 2019;555:423.

    Article  CAS  Google Scholar 

  38. Dai K, Lv JL, Zhang JF, Liang CH, Zhu GP. Band structure engineering design of g-C3N4/ZnS/SnS2 ternary heterojunction visible-light photocatalyst with ZnS as electron transport buffer material. J Alloy Compd. 2019;778:215.

    Article  CAS  Google Scholar 

  39. Srivind J, Nagarethinam VS, Suganya M, Balamurugan S, Usharani K, Balu AR. NiO coupled SnS2 nanoparticles with improved magnetic and photocatalytic performance against the degradation of organic dyes without N=N double bond. Vacuum. 2019;163:373.

    Article  CAS  Google Scholar 

  40. Chen DY, Huang SS, Huang RT, Zhang Q, Le TT, Cheng EB, Yue R, Hu ZJ, Chen ZW. Construction of Ni-doped SnO2-SnS2 heterojunctions with synergistic effect for enhanced photodegradation activity. J Hazard Mater. 2019;368:204.

    Article  CAS  Google Scholar 

  41. Yao SY, Zheng RF, Li R, Chen YQ, Zhou XS, Luo J. Construction of Z-scheme LaNiO3/SnS2 composite for boosting visible light photodegradation of tetracycline. J Taiwan Inst Chem E. 2019;100:186.

    Article  CAS  Google Scholar 

  42. Zhang F, Zhang YC, Zhang GS, Yang ZJ, Dionysiou D, Zhu AP. Exceptional synergistic enhancement of the photocatalytic activity of SnS2 by coupling with polyaniline and N-doped reduced graphene oxide. Appl Catal B. 2018;236:53.

    Article  CAS  Google Scholar 

  43. Firman K, Tan KB, Khaw CC, Zainal Z, Tan YP, Chen SK. Influence of Nb2O5 substitution on the structural and electrical properties of Bi3TaO7 ceramics. Mater Chem Phys. 2018;214:464.

    Article  CAS  Google Scholar 

  44. Cui YM, Jia QF, Li HQ, Han JY, Zhu LJ, Li SG, Zou Y, Yang J. Photocatalytic activities of Bi2S3/BiOBr nanocomposites synthesized by a facile hydrothermal process. Appl Surf Sci. 2014;290:233.

    Article  CAS  Google Scholar 

  45. Zhang J, Qu LN, Wu YH, Ma YX, Chai ZL, Wang XJ. Fabrication of visible-light-driven Bi2O3-Bi3TaO7 nanocomposite for tetracycline degradation with enhanced photocatalytic efficiency. J Solid State Chem. 2019;278:120894.

    Article  CAS  Google Scholar 

  46. Song QG, Wu PD, Sarkar S, Zhao YF, Liu ZF. Bi3TaO7 film: a promising photoelectrode for photoelectrochemical water splitting. Dalton Trans. 2020;49(1):147.

    Article  CAS  Google Scholar 

  47. Cao J, Xu BY, Lin HL, Luo BD, Chen SF. Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans. 2012;41(37):1148.

    Article  CAS  Google Scholar 

  48. Wang S, Li GS, Leng ZH, Wang Y, Fang SF, Wang JH, Wei YH, Li LP. Systematic optimization of promoters in trace SnS2 coating SnO2 nano-heterostructure for high performance Cr(VI) photoreduction. Appl Surf Sci. 2019;471:813.

    Article  CAS  Google Scholar 

  49. Zhang J, Huang GZ, Zeng JH, Jiang XD, Shi YX, Lin SJ, Chen X, Wang HB, Kong Z, Xi JH, Ji ZG. SnS2 nanosheets coupled with 2D ultrathin MoS2 nanolayers as face-to-face 2D/2D heterojunction photocatalysts with excellent photocatalytic and photoelectrochemical activities. J Alloys Compd. 2019;775:726.

    Article  CAS  Google Scholar 

  50. Yang Y, Yang XA, Leng D, Wang SB, Zhang WB. Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem Eng J. 2018;335:491.

    Article  CAS  Google Scholar 

  51. Shown I, Samireddi S, Chang YC, Putikam R, Chang PH, Sabbah A, Fu FY, Chen WF, Wu CI, Yu TY, Chung PW, Lin MC, Chen LC, Chen KH. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat Commun. 2018;9(1):169.

    Article  CAS  Google Scholar 

  52. Ma GQ, Liu FS, Wang S, Dang ZC, Zhang JW, Fu XJ, Hou MS. Preparation and characterization of Bi2S3/3DOM-TiO2 for efficient photocatalytic degradation of Rhodamine B. Mater Sci Semicon Proc. 2019;100:61.

    Article  CAS  Google Scholar 

  53. Shi HX, Wang CJ, Zhao YY, Liu EZ, Fan J, Ji Z. Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite. Appl Catal B. 2019;254:403.

    Article  CAS  Google Scholar 

  54. Wang JJ, Zhou C, Yan XH, Wang Q, Sha DW, Pan JM, Cheng XN. Hydrothermal synthesis of hierarchical nanocomposite assembled by Bi2S3 nanorods and MoS2 nanosheets with improved electrochemical performance. J Mater Sci Mater Electron. 2019;30(7):6633.

    Article  CAS  Google Scholar 

  55. Ke J, Liu J, Sun HQ, Zhang HY, Duan XG, Liang P, Li XY, Tade MO, Liu SM, Wang SB. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl Catal B. 2017;200:47.

    Article  CAS  Google Scholar 

  56. Shao BB, Liu XJ, Liu ZF, Zeng GM, Liang QH, Liang C, Cheng Y, Zhang W, Liu Y, Gong SX. A novel double Z-scheme photocatalyst Ag3PO4/Bi2O3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem Eng J. 2019;368:730.

    Article  CAS  Google Scholar 

  57. Han L, Zhong YL, Su Y, Wang LT, Zhu LS, Fei XF, Dong YZ, Hong G, Zhou YT, Fang D. Nanocomposites based on 3D macroporous biomass carbon with SnS2 nanosheets hierarchical structure for efficient removal of hexavalent chromium. Chem Eng J. 2019;369:1138.

    Article  CAS  Google Scholar 

  58. Xu YG, Wang DD, Xie M, Jing LQ, Huang YP, Huang LY, Xu H, Li HM, Xie JM. Novel broad spectrum light responsive PPy/hexagonal-SnS2 photocatalyst for efficient photoreduction of Cr(VI). Mater Res Bull. 2019;112:226.

    Article  CAS  Google Scholar 

  59. Shen HQ, Wang JX, Jiang JH, Luo BF, Mao BD, Shi WD. All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3 for tetracycline degradation under visible-light irradiation. Chem Eng J. 2017;313:508.

    Article  CAS  Google Scholar 

  60. Helal A, Harraz F, Ismail A, Sami M, Ibrahim A. Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light. Appl Catal B. 2017;213:18.

    Article  CAS  Google Scholar 

  61. Luo J, Li R, Chen Y, Zhou XS, Ning XM, Zhan L, Ma L, Xu XY, Xu LM, Zhang LL. Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Sep Purif Technol. 2019;210:417.

    Article  CAS  Google Scholar 

  62. Yu CF, Wang K, Yang PY, Yang SN, Lu C, Song YZ, Dong SY, Sun JY, Sun JH. One-pot facile synthesis of Bi2S3/SnS2/Bi2O3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation. Appl Surf Sci. 2017;420:233.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51978342), the Open Fund of Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (No. ES201980195), and a project from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Jing Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Supplementary file2 (DOCX 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, JJ., Gu, HY., Chen, MD. et al. Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation. Rare Met. 41, 2417–2428 (2022). https://doi.org/10.1007/s12598-022-01988-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01988-1

Keywords

Navigation