Skip to main content
Log in

Improved thermoelectric properties of zone-melted p-type bismuth-telluride-based alloys for power generation

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 01 March 2022

This article has been updated

Zone-melted bismuth-telluride-based alloys (ZM-BT) are extensively applied to manufacture commercial thermoelectric power generators (TEG). Optimizing the average figure of merit (zT) during 300–500 K of ZM-BT is favorable for improving the conversion efficiency of common TEGs, and manipulating point defects is the primary approach to reduce their relatively high lattice thermal conductivity (κl) and enhance thermoelectric properties further. Se/Te alloying has been confirmed effective for traditional n-type Bi2Te3 compound, while Se alloying in p-type counterparts is rarely reported. Herein, to further reduce κl, we introduce Se alloying into p-type Bi0.3Sb1.7Te3 to enhance the scattering of high-frequency phonons. Combined with the carrier concentration adjustment via excess Te doping, a high average zT ~ 0.75 between 300 and 500 K was obtained, 22% higher than that of the pristine ingot.

Graphical Abstract

摘要

区熔碲化铋合金广泛应用于商业化热电发电器的生产。优化区熔碲化铋合金300 - 500 K的热电性能对提高常规热电发电器的转化效率是有利的。主要的手段为调控点缺陷来降低相对较高的晶格热导率, 进一步提高其热电性能。Se/Te合金化在传统的n型碲化铋中是有效的, 而在p型中少有报道。本工作中, 我们在p型Bi0.3Sb1.7Te3中引入Se合金化来增强对高频声子的散射。结合后续过量Te掺杂优化载流子浓度, 获得了300 - 500 K区间较高的平均zT ~ 0.75, 较基体提高了22%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

References

  1. Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Electron Mater. 2009;38(7):1245.

    Article  CAS  Google Scholar 

  2. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    Article  CAS  Google Scholar 

  3. Disalvo FJ. Thermoelectric cooling and power Generation. Science. 1999;285(5428):703.

    Article  CAS  Google Scholar 

  4. Kajikawa T. Thermoelectric application for power generation in japan. Adv Sci Technol. 2010;74:83.

    Article  CAS  Google Scholar 

  5. Shinohara Y. The state of the art on thermoelectric devices in japan. Mater Today Proc. 2015;2(2):877.

    Article  Google Scholar 

  6. Rosi FD, Abeles B, Jensen RV. Materials for thermoelectric refrigeration. J Phys Chem Solids. 1959;10(2):191.

    Article  CAS  Google Scholar 

  7. Yim WM, Fitzke EV, Rosi FD. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. J Mater Sci. 1966;1(1):52.

    Article  CAS  Google Scholar 

  8. Rosi FD. Thermoelectricity and thermoelectric power generation. Solid State Electron. 1968;11(9):833.

    Article  Google Scholar 

  9. Yim WM, Rosi FD. Compound tellurides and their alloys for peltier cooling-a review. Solid State Electron. 1972;15(10):1121.

    Article  CAS  Google Scholar 

  10. Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308.

    Google Scholar 

  11. Zhai RS, Wu YH, Zhu TJ, Zhao XB. Tunable optimum temperature range of high-performance zone melted bismuth-telluride-based solid solutions. Cryst Growth Des. 2018;18(8):4646.

    Article  CAS  Google Scholar 

  12. Lostak P, Klichova I, Svanda P, Sramkova J. Characterization of Ag-doped Bi1.5Sb0.5Te3 single crystals. Cryst Res Technol. 1999;34:995.

    Article  CAS  Google Scholar 

  13. Xie D, Xu J, Liu G, Liu Z, Shao H, Tan X, Jiang J, Jiang H. Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies. 2016; 9(4): 236

    Article  Google Scholar 

  14. Ivanova LD, Granatkina YV, Scherrer H. Effects of growth-charge purity and perfection of Bi0.5Sb1.5Te3 single crystals on their thermoelectric properties. Inorg Mater. 2000; 36: 678.

    Article  CAS  Google Scholar 

  15. Ivanova LD, Granatkina YV. Thermoelectric properties of Bi2Te3-Sb2Te3 single crystals in the range 100–700 K. Inorg Mater. 1998;36:672.

    Article  Google Scholar 

  16. Zhou Y, Li X, Bai S, Chen L. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals. J Cryst Growth. 2010; 312(6): 775

    Article  CAS  Google Scholar 

  17. Yang YX, Wu YH, Zhang Q, Cao GS, Zhu TJ, Zhao XB. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met. 2020;39(8):887.

    Article  CAS  Google Scholar 

  18. Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K. BiSbTe-based nanocomposites with high ZT: the effect of sic nano dispersion on thermoelectric properties. Adv Funct Mater. 2013;23(35):4317.

    Article  CAS  Google Scholar 

  19. Poudel B, Qing H, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee A, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    Article  CAS  Google Scholar 

  20. Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett. 2009; 94(10): 102111.

    Article  Google Scholar 

  21. Zheng Y, Zhang Q, Su XL, Xie HY, Shu SC, Chen TL, Tan GJ, Yan YG, Tang XF, Uher C, Snyder GJ. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater. 2015; 5(5): 102111

    Article  Google Scholar 

  22. Kim S II, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Sicence. 2015;348(6230):109.

    Article  CAS  Google Scholar 

  23. Jiang YZ, Duan XK. Thermoelectric properties of Bi0.5Sb1.4-xNaxIn0.1Te3 alloys. Rare Met. 2019;38(12):1187.

    Article  CAS  Google Scholar 

  24. Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu HS, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ Sci. 2016;9(10):3120.

    Article  CAS  Google Scholar 

  25. Hao F, Qiu P, Song QF, Chen HY, Lu P, Ren DD, Shi X, Chen LD. Roles of cu in the enhanced thermoelectric properties in Bi0.5Sb1.5Te3. Materials, 2017, 10(3):251.

  26. Xu Z, Wu H, Zhu T, Fu C, Liu X, Hu L, He J, He J, Zhao X. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. Npg Asia Mater. 2016; 8(9): e302.

  27. Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. Npg Asia Mater. 2014; 6(2): e88.

  28. Tang Z, Hu L, Zhu T, Liu X, Zhao X. High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C. 2015;3(40):10597.

    Article  CAS  Google Scholar 

  29. Hu LP, Liu XH, Xie HH, Shen JJ, Zhu TJ, Zhao XB. Improving thermoelectric properties of n-type bismuth-telluride-based alloys by deformation-induced lattice defects and texture enhancment. Acta Mater. 2012;60(11):4431.

    Article  CAS  Google Scholar 

  30. Hao F, Xing T, Qiu P, Hu P, Wei TR, Ren DD, Shi X, Chen LD. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation. Acs Applied Materials & Interfaces, 2018:acsami.8b06533.

  31. Wang SY, Tan GJ, Xie WJ, Zheng G, Li H, Yang JH, Tang XF. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation. J Mater Chem. 2012;22(39):20943.

    Article  CAS  Google Scholar 

  32. Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1–x crystals prepared via zone melting. J Cryst Growth. 2005;277(1–4):258.

    Article  CAS  Google Scholar 

  33. Goldsmid HJ. Recent studies of bismuth telluride and its alloys. J Appl Phys. 1961;32(10):2198.

    Article  CAS  Google Scholar 

  34. Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.

    Article  Google Scholar 

  35. Pan, Y, Li, J. F. Thermoelectric performance enhancement in n-Type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 2016; 8(6): e275.

    Article  Google Scholar 

  36. Kim HS, Heinz NA, Gibbs ZM, Tang Y, Kang SD, Snyder GJ. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Mater Today. 2017; 20(8): 452.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Project of FerroTec Group (No. 000RD20001) and the National Natural Science Foundation of China (Nos. 61534001 and 11574267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Shuang Zhai.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

The original article has been updated to retain first and corresponding affiliations as in manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, RS., Zhu, TJ. Improved thermoelectric properties of zone-melted p-type bismuth-telluride-based alloys for power generation. Rare Met. 41, 1490–1495 (2022). https://doi.org/10.1007/s12598-021-01901-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01901-2

Navigation