Skip to main content
Log in

Strengthening-toughening methods and mechanisms of Mg–Li alloy: a review

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnesium–lithium (Mg–Li) alloy, as the lightest metal structure material, has unparalleled market prospects in aerospace, weapons and equipment, electronic technology, transportation, and many other fields. However, it is hard to balance the superlight and high strength of Mg–Li alloy, and the inferior high-temperature strength and poor high-temperature stability limit the wide application of Mg–Li alloy. At present, the main methods to improve the mechanical properties of Mg–Li alloy are alloying, grain refinement, and compound strengthening. The domestic and overseas research progress in the strengthening and toughening methods and mechanisms of Mg–Li alloy are reviewed, and the future development of the high strength and high toughness Mg–Li alloy is prospected.

摘要

作为最轻的金属结构材料, Mg–Li合金在航空航天、武器装备、电子科技以及交通运输等领域具有广阔的应用前景。然而, Mg–Li合金的超轻和高强度很难兼顾, 较差的高温强度和稳定性限制了该合金的广泛应用。目前, 提高Mg-Li合金力学性能的主要途径是合金化强化、细晶强化和复合强化。本文介绍了国内外学者在镁锂合金强韧化方法与机理方面的研究进展, 并对高强韧镁锂合金的研发趋势进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [25]. Copyright 2014, Elsevier B.V

Fig. 2

Reproduced with permission from Ref. [26]. Copyright 2014, the Nonferrous Metals Society of China

Fig. 3

Reproduced with permission from Ref. [36]. Copyright 2015, Elsevier B.V

Fig. 4
Fig. 5

Copyright 2013, The Minerals, Metals & Materials Society and ASM International

Fig. 6

Reproduced with permission from Ref. [58]. Copyright, 2015 Elsevier B.V

Fig. 7

Reproduced with permission from Ref. [60]. Copyright 2018 by the authors

Fig. 8

Reproduced with permission from Ref. [61]. Copyright 2017, Published by Elsevier Ltd on behalf of the editorial office of Journal of Materials Science & Technology

Fig. 9

Reproduced with permission from Ref. [48]. Copyright 2017, Elsevier B.V

Fig. 10

Similar content being viewed by others

References

  1. Wang BJ, Xu K, Xu DK, Cai X, Qiao YX, Sheng LY. Anisotropic corrosion behavior of hot-rolled Mg-8 wt.%Li alloy. J Mater Sci Technol. 2020;53(18):102.

    Article  Google Scholar 

  2. Yan YM, Maltseva A, Zhou P, Li XJ, Zeng ZR, Gharbi O, Ogle K, Haye LM, Vaudescal M, Esmaily M, Birbilis N, Volovitch P. On the in-situ aqueous stability of an Mg–Li–(Al–Y–Zr) alloy: role of Li. Corros Sci. 2020;164:108342.

    Article  CAS  Google Scholar 

  3. Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M. In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg–Li–(Al) alloys: an uncommon tension–compression asymmetry. Acta Mater. 2015;86:254.

    Article  CAS  Google Scholar 

  4. Zhang JH, Zhang L, Leng Z, Liu SJ, Wu RZ, Zhang ML. Experimental study on strengthening of Mg–Li alloy by introducing long-period stacking ordered structure. Scr Mater. 2013;68(9):675.

    Article  CAS  Google Scholar 

  5. Peng X, Liu WC, Wu GH, Ji H, Ding WJ. Plastic deformation and heat treatment of Mg–Li alloys: a review. J Mater Sci Technol. 2022;99:193.

    Article  Google Scholar 

  6. Li Z, Xu B, Sun Q, Li QL, Liu W. Stress field interaction during propagation of adjacent tensile twinning nuclei in magnesium. Rare Met. 2019;38(8):721.

    Article  CAS  Google Scholar 

  7. Fu H, Ge BC, Xin YC, Wu RZ, Fernandez C, Huang JY, Peng QM. Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins. Nano Lett. 2017;17(10):6117.

    Article  CAS  Google Scholar 

  8. Sanschagrin A, Tremblay R, Angers R, Dube D. Mechanical properties and microstructure of new magnesium-lithium base alloys. Mater Sci Eng A. 1996;220(1–2):69.

    Article  Google Scholar 

  9. Le QZ, Cui JZ, Li HB, Zhang XJ. Current research development in Mg–Li alloy and its applications. Mater Rep. 2003;17(12):1.

    Google Scholar 

  10. Wang W. Study of microstructures and mechanical properties on α-based Mg-Li alloys with Cd/Sn alloying. Master Thesis. Harbin: Harbin Engineering University. 2010.1.

  11. Alamo A, Banchik AD. Precipitation phenomena in the Mg-31 at%Li-1at%Al alloy. J Mater Sci. 1980;15(1):222.

    Article  CAS  Google Scholar 

  12. Agnew SR, Yoo MH, Tome CN. Application of texture simulation to understanding mechanical behevior of Mg and solid solution alloys containing Li or Y. Acta Mater. 2001;49(20):4277.

    Article  CAS  Google Scholar 

  13. Luo GX, Wu GQ, Wang SJ, Li RH, Huang Z. Effects of YAl2 particulates on microstructure and mechanical properties of β-Mg–Li alloy. J Mater Sci. 2006;41(17):5556.

    Article  CAS  Google Scholar 

  14. Shen GJ, Duggan BJ. Texture development in a cold-rolled and annealed body-centered-cubic Mg-Li alloy. Metall Mater Trans A. 2007;38(10):2593.

    Article  Google Scholar 

  15. Counts WA, Friak M, Raabe D, Neugebauer J. Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications. Acta Mater. 2009;57(1):69.

    Article  CAS  Google Scholar 

  16. Yang CW, Lui TS, Chen LH, Hung HE. Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the α+β-type Mg–Li–Al–Zn alloy. Scr Mater. 2009;61(12):1141.

    Article  CAS  Google Scholar 

  17. Cheng CW, Huang JJ, Lee S, Wang J, Ciang C. Microstructure and mechanical behaviors of the new LAZ1151 Mg-Li alloy. Adv Mater Res. 2011;239–242:1326.

    Article  Google Scholar 

  18. Cao FR, Xia F, Hou HL, Ding H, Li ZQ. Effects of high-density pulse current on mechanical properties and microstructure in a rolled Mg–9.3Li–1.79Al–1.61Zn alloy. Mater Sci Eng A. 2015;637:89.

    Article  CAS  Google Scholar 

  19. Trojanova Z, Droz Z, Kudela S, Szaraza Z, Lukac P. Strengthening in Mg-Li matrix composites. Compos Sci Technol. 2007;67(9):1965.

    Article  CAS  Google Scholar 

  20. Yamamoto A, Ashida T, Kouta Y, Kim KB, Fukumoto S, Tsubakino H. Precipitation in Mg–(4–13)%Li–(4–5)%Zn ternary alloys. Mater Trans. 2003;44(4):619.

    Article  CAS  Google Scholar 

  21. Hsu C, Wang J, Lee S. Room temperature aging characteristic of MgLiAlZn alloy. Mater Trans. 2008;49(11):2728.

    Article  CAS  Google Scholar 

  22. Xu TC, Peng XD, Jiang JW, Wei GB, Zhang B. Microstructure and mechanical properties of superlight Mg–Li–Al–Zn wrought alloy. Rare Met Mater Eng. 2014;43(8):1815.

    Article  Google Scholar 

  23. Guo XY, Wu RZ, Zhang JH, Liu B, Zhang ML. Influences of solid solution parameters on the microstrucuture and hardness of Mg–9Li–6Al and Mg–9Li–6Al–2Y. Mater Des. 2014;53:528.

    Article  CAS  Google Scholar 

  24. Dong HW, Wang LD, Wu YM, Wang LM. Preparation and characterization of Mg–6Li and Mg–6Li–1Y alloys. J Rare Earths. 2011;29(7):645.

    Article  CAS  Google Scholar 

  25. Fei PF, Qu ZK, Wu RZ. Microstructure and hardness of Mg–9Li–6Al–xLa (x=0, 2, 5) alloys during solid solution treatment. Mater Sci Eng A. 2015;625:169.

    Article  CAS  Google Scholar 

  26. Xu TC, Peng XD, Jiang JW, Xie WD, Chen YF, Wei GB. Effect of Sr content on microstructure and mechanical properties of Mg-Li-Al-Mn alloy. Trans Nonferrous Met Soc China. 2014;24(9):2752.

    Article  CAS  Google Scholar 

  27. Li JQ, Qu ZK, Wu RZ, Zhang ML. Effects of Cu addition on the microstructure and hardness of Mg–5Li–3Al–2Zn alloy. Mater Sci Eng A. 2010;527(10–11):2780.

    Article  Google Scholar 

  28. Tang Y, Jia WT, Liu X, Le QC, Zhang YL. Fabrication of high strength α, α+β, β phase containing Mg-Li alloys with 0.2%Y by extruding and annealing process. Mater Sci Eng A. 2016;675:55.

    Article  CAS  Google Scholar 

  29. Wj KIM. Explanation for deviations from the Hall-Petch Relation based on the creep behavior of an ultrafine-grained Mg–Li alloy with low diffusivity. Scr Mater. 2009;61(6):652.

    Article  Google Scholar 

  30. Muga CO, Guo H, Xu SS, Zhang ZW. Effects of aging and fast-cooling on the mechanical properties of Mg–14Li–3Al–3Ce alloy. Mater Sci Eng A. 2017;689:195.

    Article  CAS  Google Scholar 

  31. Xu TC, Peng XD, Qin J, Chen YF, Yang Y, Wei GB. Dynamic recrystallization behavior of Mg–Li–Al–Nd duplex alloy during hot compression. J Alloy Compd. 2015;639:79.

    Article  CAS  Google Scholar 

  32. Torkian A, Faraji G, Pedram MS. Mechanical properties and in vivo biodegradability of Mg–Zr–Y–Nd–La magnesium alloy produced by a combined severe plastic deformation. Rare Met. 2021;40(3):651.

    Article  CAS  Google Scholar 

  33. Tan L, Zhang XY, Xia T, Huang GJ, Liu Q. Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing. Rare Met. 2020;39(2):162.

    Article  CAS  Google Scholar 

  34. Kim YW, Kim DH, Lee HI, Hong CP. Widmanstatten type solidification in squeeze casting of Mg–Li–Al alloys. Scr Mater. 1998;38(6):923.

    Article  CAS  Google Scholar 

  35. Matsuda A, Wan CC, Yang JM, Kao WH. Rapid solidification processing of a Mg–Li–Si–Ag alloy. Metall Mater Trans A. 1996;27:1363.

    Article  Google Scholar 

  36. Zhou YY, Bian LP, Chen G, Wang LP, Liang W. Influence of Ca addition on microstructural evolution and mechanical properties of near-eutectic Mg–Li alloys by copper-mold suction casting. J Alloy Compd. 2016;664:85.

    Article  CAS  Google Scholar 

  37. Hu Z, Yin Z, Yin Z, Tang BB, Huang X, Yan H, Song HG, Luo C, Chen XH. Influence of Sm addition on microstructural and mechanical properties of as-extruded Mg–9Li–5Al alloy. J Alloys Compd. 2020;842:155836.

    Article  CAS  Google Scholar 

  38. Chiang C, Lee S, Chu C. Rolling route for refining grains of super light Mg–Li alloys containing Sc and Be. Trans Nonferrous Met Soc China. 2010;20(8):1374.

    Article  CAS  Google Scholar 

  39. Dong TS, Zheng XD, Wang T, Liu JH, Li GL. Effect of Nd content on microstructure and mechanical properties of as-cast Mg–12Li–3Al alloy. China Foundry. 2018;14(4):279.

    Article  Google Scholar 

  40. Cui CL, Zhu TL, Leng Z, Wu RZ, Zhang JH, Zhang ML. Effect of combined addition of Y and Nd on microstructure and texture after compression of Mg–Li alloy at room temperature. Acta Metall Sin. 2012;48(6):725.

    Article  CAS  Google Scholar 

  41. Le QZ, Cui JZ. The effect of Zr on the mechanical properties of Mg–Li alloy. Mater Rep. 1997;11(1):26.

    Google Scholar 

  42. Li HB, Yao GC, Liang CL, Liu YH, Guo ZQ, Jiang HJ. Microstructure and properties of Mg–Li–Zn alloy sheets with Mn addition. J Funct Mater. 2006;37(8):1269.

    CAS  Google Scholar 

  43. Nene SS, Kashyap BP, Prabhu N, Estrin Y, Al-Samman T. Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg–4Li–1Ca (LC41) alloy by hot rolling. J Alloy Compd. 2014;615:501.

    Article  CAS  Google Scholar 

  44. Li HB, Yao GC, Guo ZQ, Liu YH, Yu HJ, Ji HB. Microstructure and mechanical properties of Mg–Li alloy with Ca addition. Acta Mater. 2006;19(5):355.

    CAS  Google Scholar 

  45. Guo F, Liu L, Ma YL, Jiang LY, Zhang DF, Pan FS. Mechanism of phase refinement and its effect on mechanical properties of a severely deformed dual-phase Mg–Li alloy during annealing. Mater Sci Eng A. 2020;772:138792.

    Article  CAS  Google Scholar 

  46. Mineta T, Hasegawa K, Sato H. High strength and plastic deformability of Mg–Li–Al alloy with dual BCC phase produced by a combination of heat treatment and multi-directional forging in channel die. Mat Sci Eng A. 2020;773:138867.

    Article  CAS  Google Scholar 

  47. Liu T, Wang YD, Wu SD, Lin PR, Huang CX, Jiang CB, Li SX. Textures and mechanical behavior of Mg–3.3%Li alloy after ECAP. Scr Mater. 2004;51(11):1057.

    Article  CAS  Google Scholar 

  48. Cao FR, Xue GQ, Xu GM. Superplasticity of a dual-phase-dominated Mg–Li–Al–Zn–Sr alloy processed by multidirectional forging and rolling. Mater Sci Eng A. 2017;704:360.

    Article  CAS  Google Scholar 

  49. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47(2):579.

    Article  CAS  Google Scholar 

  50. Lin K, Kang ZX, Fang Q, Zhang JY. Microstructure and mechanical properties of Mg–Li alloy processed by severe plastic deformation and annealing. Chin J Nonferrous Met. 2012;23(12):3267.

    Google Scholar 

  51. Yang HJ, Shao XH, Li SX, Wu SD, Zhang ZF. Enhancing strength and maintaining ductility of Mg–3%Li–1%Sc alloy by equal channel angular pressing. Mater Sci Forum. 2010;667–669:839.

    Article  Google Scholar 

  52. Wang TZ, Zheng HP, Wu RZ, Yang JL, Ma XD, Zhang ML. Preparation of fine-grained and high-strength Mg–8Li–3Al–1Zn alloy by accumulative roll bonding. Adv Eng Mater. 2016;18(2):304.

    Article  CAS  Google Scholar 

  53. Xu J, Su Q, Wang CX, Wang XW, Shan DB, Guo B, Landon TG. Micro-embossing formability of a superlight dual-phase Mg–Li alloy processed by high-pressure torsion. Adv Eng Mater. 2019;21(2):1800961.

    Article  Google Scholar 

  54. Sharath PC, Udupa KR, Kumar GVP. Effect of multi directional forging on the microstructure and mechanical properties of Zn–24 wt% Al–2 wt% Cu alloy. Trans Indian Inst Met. 2016;70:89.

    Article  Google Scholar 

  55. Karami M, Mahmudi R. The microstructural, textural, and mechanical properties of extruded and equal channel angularly pressed Mg-Li-Zn alloys. Metall Mater Trans A. 2013;44(8):3934.

    Article  CAS  Google Scholar 

  56. Wei GB, Mahmoodkhani Y, Peng XD, Hadadzadeh A, Xu TC, Liu JW, Xie WD, Wells MARYA. Microstructure evolution and simulation study of a duplex Mg–Li alloy during double change channel angular pressing. Mater Des. 2016;90:266.

    Article  CAS  Google Scholar 

  57. Rogl G, Sstman D, Schafler E, Horky J, Kerber M, Zehetbauer M, Falmbigl M, Rogl P, Royanian E, Bauer E. High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater. 2012;60(5):2146.

    Article  CAS  Google Scholar 

  58. Matsunoshita H, Edalati K, Furui M, Horita Z. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: low-temperature superplasticity and potential for hydroforming. Mater Sci Eng A. 2015;640:443.

    Article  CAS  Google Scholar 

  59. Srinivasarao B, Zhilyaev AP, Gutierrez-Urrutia I, Perez-Prado MT. Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion. Scr Mater. 2013;68(8):583.

    Article  CAS  Google Scholar 

  60. Su Q, Xu J, Li Y, Yoon JI, Shan D, Guo B, Kim HS. Microstructural evolution and mechanical properties in superlight Mg–Li alloy processed by high-pressure torsion. Materials. 2018;11(4):598.

    Article  Google Scholar 

  61. Hou LG, Wang TZ, Wu RZ, Zhang JH, Zhang ML, Dong AP, Sun BD, Betsofen S, Krit B. Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding. J Mater Sci Technol. 2018;34(2):317.

    Article  CAS  Google Scholar 

  62. Cao FR, Zhang J, Ding X, Xue GQ, Liu SY, Sun CF, Su RK, Teng XM. Mechanical properties and microstructural evolution in a superlight Mg–6.4Li–3.6Zn–0.37Al–0.36Y alloy processed by multidirectional forging and rolling. Mater Sci Eng A. 2019;760:377.

    Article  CAS  Google Scholar 

  63. Kudela S, Gergely V, Jansch E, Hofmann A, Baunack S, Oswald S, Wetzig K. Compatibility between PAN-based carbon fibres and Mg–8Li alloy during the pressure infiltration process. J Mater Sci. 1994;29:5576.

    Article  CAS  Google Scholar 

  64. Xiao P, Gao YM, Yang CC, Li YF, Huang XY, Liu QK, Zhao SY, Xu FX, Gupta M. Strengthening and toughening mechanisms of Mg matrix composites reinforced with specific spatial arrangement of in-situ TiB2 nanoparticles. Compos Part B Eng. 2020;198:108174.

    Article  CAS  Google Scholar 

  65. Wu LB, Meng XR, Wu RZ, Cui CL, Zhang ML, Zhang JH. Solid-state composite technology for B4Cp reinforced magnesium-lithium alloy. Trans Nonferrous Met Soc China. 2011;21(4):820.

    Article  CAS  Google Scholar 

  66. Cui CL, Wu LB, Wu RZ, Zhang JH, Zhang ML. Influence of yttrium on microstructure and mechanical properties of as-cast Mg–5Li–3Al–2Zn alloy. J Alloys Compd. 2011;509(37):9045.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51771115, 51775334, 51821001 and U2037601) and the Joint Fund for Space Science and Technology (No. 6141B06310106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cai Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Liu, WC. & Wu, GH. Strengthening-toughening methods and mechanisms of Mg–Li alloy: a review. Rare Met. 41, 1176–1188 (2022). https://doi.org/10.1007/s12598-021-01874-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01874-2

Keywords

Navigation