Skip to main content
Log in

Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

钠离子电池的快速发展需要寻找具有高能量密度、高性能电极材料。在这方面, 不需要额外的导电剂、粘合剂和金属箔集流体的自支撑电极材料可以有效地降低整体电极质量, 从而增加能量密度。通过离子液体辅助静电纺丝方法和可控烧结工艺成功地制造了自支撑Na3V2(PO4)3/C纳米纤维膜。离子液体前驱体的良好溶解性保证了PAN基电纺丝体系的可纺性, 在后续的热处理过程中Na3V2(PO4)3纳米颗粒表面原位形成致密连续的碳层, 有效地提高了整个电极的电子导电性。另外, 作为集流体的三维碳纳米纤维膜可以增加电极和电解质之间的接触面积, 从而提高自支撑NVP/C电极的电化学性能。与其他对应物 (NVP/C纳米纤维和NVP/C纳米颗粒) 相比, NVP/C纳米纤维膜片表现出高比容量、稳定的循环性能和优异的速率能力, 在5.0C条件下放电容量高达75.2 mAh·g−1, 循环寿命超过1000次。本论文的研究成果有望为制备高性能的自支撑钠离子电池电极材料提供一条便捷而通用的途径。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zeng XQ, Li M, Abd El-Hady D, Alshitari W, Al-Bogami AS, Lu J, Amine K. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater. 2019;9(27):1900161.1.

    Article  Google Scholar 

  2. Wu FX, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49(5):1569.

    Article  CAS  Google Scholar 

  3. Deng D. Li-ion batteries: basics, progress, and challenges. Energy Sci Eng. 2015;3(5):385.

    Article  Google Scholar 

  4. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3(4):18013.

    Article  Google Scholar 

  5. Liang JM, Zhang LJ, Xili DG, Kang J. Research progress on tin-based anode materials for sodium ion batteries. Rare Met. 2020;39(9):1005.

    Article  CAS  Google Scholar 

  6. Deng JQ, Luo WB, Chou SL, Liu HK, Dou SX. Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. 2018;8(4):1701428.

    Article  Google Scholar 

  7. Yang Y, Wei WF. Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries. Rare Met. 2020;39(4):332.

    Article  CAS  Google Scholar 

  8. Xu C, Yang Y, Wang H, Xu B, Li Y, Tan R, Duan X, Wu D, Zhuo M, Ma J. Electrolytes for lithium- and sodium-metal batteries. Chem Asian J. 2020;15(22):3584.

    Article  CAS  Google Scholar 

  9. Wu MG, Liao JQ, Yu LX, Lv RT, Li P, Sun WP, Tan R, Duan XC, Zhang L, Li F, Kim J, Shin KH, Park HS, Zhang WC, Guo ZP, Wang HT, Tang YB, Gorgolis G, Galiotis C, Ma JM. 2020 Roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.

    Article  CAS  Google Scholar 

  10. Gu ZY, Guo JZ, Sun ZH, Zhao XX, Li WH, Yang X, Liang HJ, Zhao CD, Wu XL. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020;65(9):702.

    Article  CAS  Google Scholar 

  11. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater. 2020;10(1):1902485.

    Article  CAS  Google Scholar 

  12. Zhou X, Zhang Z, Du Y, Wang QC, Shen J. A yolk-shell structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew Chem. 2020;59(40):17504.

    Article  Google Scholar 

  13. Song MM, Wang CC, Du DF, Li FJ, Chen J. A high-energy-density sodium-ion full battery based on tin anode. Sci China Chem. 2019;62(005):616.

    Article  CAS  Google Scholar 

  14. Zheng Q, Yi HM, Li XF, Zhang HM. Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J Energy Chem. 2018;27(6):1597.

    Article  Google Scholar 

  15. Zhu L, Wang H, Sun D, Tang Y, Wang H. A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. J Mater Chem A. 2020;8(41):21387.

    Article  CAS  Google Scholar 

  16. Zhang XH, Rui XH, Chen D, Tan HT, Yang D, Huang SM, Yu Y. Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale. 2019;11(6):2556.

    Article  CAS  Google Scholar 

  17. Chen GX, Huang Q, Wu T, Lu L. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries-a review. Adv Funct Mater. 2020;30(34):202001289.

    Article  Google Scholar 

  18. Wang QH, Xu JT, Zhang WC, Mao ML, Wei ZX, Wang L, Cui CY, Zhu YX, Ma JM. Research progress on vanadium-based cathode materials for sodium ion batteries. J Mater Chem A. 2018;6(19):8815.

    Article  CAS  Google Scholar 

  19. Xu JY, Gu EL, Zhang ZZ, Xu ZH, Xu YF, Du YC, Zhu XS, Zhou XS. Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. J Colloid Interface Sci. 2020;567:84.

    Article  CAS  Google Scholar 

  20. Gu EL, Xu JY, Du YC, Ge XF, Zhu XS, Bao JC, Zhou XS. Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. J Alloys Compd. 2019;788:240.

    Article  CAS  Google Scholar 

  21. Gu EL, Liu SH, Zhang ZZ, Fang YY, Zhou XS, Bao JC. An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network. J Alloys Compd. 2018;767:131.

    Article  CAS  Google Scholar 

  22. Gu XX, Qiao S, Ren XL, Liu XY, He YZ, Liu XT, Liu TF. Multi-core-shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries. Rare Met. 2021;40(4):828.

    Article  CAS  Google Scholar 

  23. Song WX, Ji XB, Wu ZP, Zhu YR, Yang YC, Chen J, Jing MJ, Li FQ, Banks CE. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem A. 2014;2(15):5358.

    Article  CAS  Google Scholar 

  24. Xu JL, Chen JZ, Zhou S, Han CP, Xu MJ, Zhao N, Wong CP. Sequentially-processed Na3V2(PO4)3 for cathode material of aprotic sodium ion battery. Nano Energy. 2018;50:323.

    Article  CAS  Google Scholar 

  25. Jian ZL, Yuan CC, Han WZ, Lu X, Gu L, Xi XK, Hu YS, Li H, Chen W, Chen DF, Ikuhara Y, Chen LQ. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv Funct Mater. 2014;24(27):4265.

    Article  CAS  Google Scholar 

  26. Li S, Dong YF, Xu L, Xu X, He L, Mai LQ. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater. 2014;26(21):3545.

    Article  CAS  Google Scholar 

  27. Yao XH, Zhu ZX, Li Q, Wang XP, Xu XM, Meng JS, Ren WH, Zhang XH, Huang YH, Mai LQ. A 3.0 V high energy density symmetric sodium-ion battery: Na4V2(PO4)3||Na3V2(PO4)3. ACS Appl Mater Interfaces. 2018;10(12):10022.

    Article  CAS  Google Scholar 

  28. Fang YJ, Xiao LF, Ai XP, Cao YL, Yang HX. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater. 2015;27(39):5895.

    Article  CAS  Google Scholar 

  29. Liang XH, Ou X, Zheng FH, Pan QC, Xiong XH, Hu RZ, Yang CH, Liu ML. Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl Mater Interfaces. 2017;9(15):13151.

    Article  CAS  Google Scholar 

  30. Li H, Bai Y, Wu F, Li Y, Wu C. Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries. J Power Sources. 2015;273:784.

    Article  CAS  Google Scholar 

  31. Hu Q, Liao JY, He XD, Wang S, Xiao LN, Ding X, Chen CH. In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2-xGax(PO4)3 (0 ≤ x ≤ 0.6) for ultrafast and high energy sodium storage. J Mater Chem A. 2019;7(9):4660.

    Article  CAS  Google Scholar 

  32. Hu Q, Liao JY, Zou BK, Wang HY, Chen CH. In situ catalytic formation of graphene decoration on Na3V2(PO4)3 particles for ultrafast and long-life sodium storage. J Mater Chem A. 2016;4(43):16801.

    Article  CAS  Google Scholar 

  33. Liu J, Tang K, Song KP, van Aken PA, Yu Y, Maier J. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale. 2014;6(10):5081.

    Article  CAS  Google Scholar 

  34. Zhu QZ, Chang XQ, Sun N, Chen RJ, Zhao YN, Xu B, Wu F. Confined growth of nano-Na3V2(PO4)3 in porous carbon framework for high-rate Na-ion storage. ACS Appl Mater Interfaces. 2019;11(3):3107.

    Article  CAS  Google Scholar 

  35. Kretschmer K, Sun B, Zhang JQ, Xie XQ, Liu H, Wang GX. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries. Small. 2017;13(9):1603318.

    Article  Google Scholar 

  36. Xu SM, Liang X, Ren ZC, Wang KX, Chen JS. Free-standing air cathodes based on 3D hierarchically porous carbon membranes: kinetic overpotential of continuous macropores in Li-O2 batteries. Angew Chem Int Ed. 2018;57(23):6825.

    Article  CAS  Google Scholar 

  37. Wang SQ, Xia L, Yu L, Zhang L, Wang HH, Lou XW. Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater. 2016;6(7):1502217.

    Article  Google Scholar 

  38. Lv CJ, Peng Y, Yang J, Liu C, Duan XC, Ma JM, Wang TH. A free-standing Li1.2Mn0.54Ni0.13Co0.13O2/MWCNT framework for high-energy lithium-ion batteries. Inorg Chem Front. 2018;5(12):3053.

    Article  CAS  Google Scholar 

  39. Liu SH, Wang ZY, Yu C, Zhao ZB, Fan XM, Ling Z, Qiu JS. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li-O2 batteries. J Mater Chem A. 2013;1(39):12033.

    Article  CAS  Google Scholar 

  40. Li F, Kaiser MR, Ma JM, Guo ZP, Liu HK, Wang JZ. Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Mater. 2018;13:312.

    Article  Google Scholar 

  41. Zhang T, Zhang L, Zhao L, Huang X, Li W, Li T, Shen T, Sun S, Hou Y. Free-standing, foldable V2O3/multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan. Small. 2020;16(47):2005302.

    Article  CAS  Google Scholar 

  42. DiLeo RA, Ganter MJ, Thone MN, Forney MW, Staub JW, Rogers RE, Landi BJ. Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes. Nano Energy. 2013;2(2):268.

    Article  CAS  Google Scholar 

  43. Zhao XX, Tang YF, Ni CL, Wang JW, Star A, Xu YH. Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Appl Energy Mater. 2018;1(4):1703.

    Article  CAS  Google Scholar 

  44. Fei L, Williams BP, Yoo SH, Carlin JM, Joo YL. A general approach to fabricate free-standing metal sulfide@carbon nanofiber networks as lithium ion battery anodes. Chem Commun. 2016;52(7):1501.

    Article  CAS  Google Scholar 

  45. Peng Y, Tan R, Ma JM, Li QH, Wang TH, Duan XC. Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. J Mater Chem A. 2019;7(24):14681.

    Article  CAS  Google Scholar 

  46. Yang J, Tan R, Li D, Ma JM, Duan XC. Ionic liquid assisted electrospinning of porous LiFe0.4Mn0.6PO4/CNFs as free-standing cathodes with a pseudocapacitive contribution for high-performance lithium-ion batteries. Chem Eur J. 2020;26(24):5341.

    Article  CAS  Google Scholar 

  47. Song WX, Cao XY, Wu ZP, Chen J, Huangfu K, Wang XW, Huang YL, Ji XB. A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Phys Chem Chem Phys. 2014;16(33):17681.

    Article  CAS  Google Scholar 

  48. Chotard JN, Rousse G, David R, Mentre O, Courty M, Masquelier C. Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature. Chem Mater. 2015;27(17):5982.

    Article  CAS  Google Scholar 

  49. Lim SJ, Han DW, Nam DH, Hong KS, Eom JY, Ryu WH, Kwon HS. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A. 2014;2(46):19623.

    Article  CAS  Google Scholar 

  50. Duan XC, Xu JT, Wei ZX, Ma JM, Guo SJ, Wang SY, Liu HK, Dou SX. Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater. 2017;29(41):1701784.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21601148) and the Natural Science Foundation of Hunan Province (No. 2018JJ3694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Chuan Duan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, ZX., Tan, R. et al. Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries. Rare Met. 41, 806–813 (2022). https://doi.org/10.1007/s12598-021-01825-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01825-x

Navigation