Skip to main content

Advertisement

Log in

Research progress on tin-based anode materials for sodium ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium ion batteries (SIBs) is considered as a promising alternative to the widely used lithium ion batteries in view of the abundant resources and uniform distribution of sodium on the earth. However, due to the lack of suitable anode and cathode materials, especially the anode materials with excellent performance, its practical application is trapped. In recent years, lots of attentions are devoted to developing new electrode materials with high sodium storage capacity and long life. In a large number of anode material libraries, tin-based materials with alloying reaction mechanism show great potential for application in high-energy SIBs due to their high theoretical specific capacity. In this paper, detailed and comprehensive research progress on tin-based anodes (including tin metal, tin alloy as well as its compounds) in recent years is summarized. Specific efforts to improve the electrochemical properties of tin-based anode materials are discussed. Moreover, the challenges and prospects of these anode materials are also proposed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission [71] Copyright (2017) Elsevier B.V

Fig. 2

Copyright (2017) American Chemical Society

Fig. 3

Reproduced with permission [73] Copyright (2019) John Wiley and Sons

Fig. 4

Reproduced with permission [74] Copyright (2018) American Chemical Society

Fig. 5

Reproduced with permission [78] Copyright (2018) American Chemical Society

Fig. 6

Reproduced with permission [79] Copyright (2018) Elsevier Ltd

Fig. 7

Reproduced with permission [84] Copyright (2019) John Wiley and Sons

Fig. 8

Reproduced with permission [86] Copyright (2017) Elsevier Ltd

Fig. 9

Reproduced with permission [91] Copyright (2018) John Wiley and Sons

Fig. 10

Reproduced with permission [94] Copyright (2019) American Chemical Society

Fig. 11

Reproduced with permission [95] Copyright (2018) Elsevier Ltd

Fig. 12

Reproduced with permission [95] Copyright (2018) Elsevier Ltd

Similar content being viewed by others

References

  1. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529.

    CAS  Google Scholar 

  2. Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.

    Google Scholar 

  3. Edison E, Sreejith S, Lim CT, Madhavi S. Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustain Energy Fuels. 2018;2(12):2567.

    CAS  Google Scholar 

  4. Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019;1(4):533.

    CAS  Google Scholar 

  5. Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.

    CAS  Google Scholar 

  6. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  7. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.

    CAS  Google Scholar 

  8. Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater. 2013;23(8):947.

    CAS  Google Scholar 

  9. Li T, Liu Z, Gu Y, Tang Y, Huang F. Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency. J Alloys Compd. 2020;817:152703.

    CAS  Google Scholar 

  10. Li Y, Hu YS, Li H, Chen L, Huang X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J Mater Chem A. 2016;4(1):96.

    Google Scholar 

  11. Nakabayashi K, Yi H, Ryu DY, Chung D, Miyawaki J, Yoon SH. Enhancement of first cycle coulombic efficiency of hard carbon derived from eucalyptus in a sodium ion battery. Chem Lett. 2019;48(7):753.

    CAS  Google Scholar 

  12. Cao Y, Liu Y, Zhao D, Xia X, Zhang LC, Zhang J, Xia Y. A highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low cost energy storage. ACS Sustain Chem Eng. 2020;8(3):1380.

    CAS  Google Scholar 

  13. Li Y, Mu L, Hu YS, Li H, Chen L, Huang X. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016;2:139.

    Google Scholar 

  14. Yasin G, Arif M, Mehtab T, Shakeel M, Mushtaq MA, Kumar A, Song H. A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorg Chem Front. 2020;7:402.

    CAS  Google Scholar 

  15. Radhakrishnan AK, Nair S, Santhanagopalan D. N-doped carbon nanosheets as high-performance anodes for Li-and Na-ion batteries. J Mater Res. 2020;35(1):12.

    CAS  Google Scholar 

  16. Yan R, Leus K, Hofmann JP, Antonietti M, Oschatz M. Porous nitrogen-doped carbon/carbon nanocomposite electrodes enable sodium ion capacitors with high capacity and rate capability. Nano Energy. 2020;67:104240.

    CAS  Google Scholar 

  17. Cao B, Liu H, Xu B, Lei Y, Chen X, Song H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J Mater Chem A. 2016;4(17):6472.

    CAS  Google Scholar 

  18. Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem. 2014;53(38):10169.

    CAS  Google Scholar 

  19. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Wang C. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5(4033):1.

    CAS  Google Scholar 

  20. Datta D, Li J, Shenoy VB. Defective graphene as a high capacity anode material for Na and Ca ion batteries. ACS Appl Mater Interfaces. 2014;6(3):1788.

    CAS  Google Scholar 

  21. Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Zhao Y. N-Doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294.

    Google Scholar 

  22. Li D, Chen H, Liu G, Wei M, Ding LX, Wang S, Wang H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon. 2015;94:888.

    CAS  Google Scholar 

  23. Liu H, Jia M, Sun N, Cao B, Chen R, Zhu Q, Xu B. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2015;7(49):27124.

    CAS  Google Scholar 

  24. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci. 2015;8(10):2916.

    CAS  Google Scholar 

  25. Liu J, Muhammad S, Wei Z, Zhu J, Duan X. Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology. 2019;31(1):015402.

    Google Scholar 

  26. Li R, Huang J, Li J, Cao L, Luo Y, He Y, Chen S. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries. ChemElectroChem. 2020;7(3):604.

    CAS  Google Scholar 

  27. Ning XM, Zhou XS, Luo J, Ma L, Zhan L. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology. 2019;31(9):095404.

    Google Scholar 

  28. Yu ZE, Lyu Y, Wang Y, Xu S, Cheng H, Mu X, Guo B. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem Commun. 2020;56(5):778.

    CAS  Google Scholar 

  29. Shan C, Feng X, Yang J, Yang X, Guan HY, Argueta M, Yue Y. Hierarchical porous carbon pellicles: electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon. 2020;157:308.

    CAS  Google Scholar 

  30. Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Yu Y. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale. 2014;6(2):693.

    CAS  Google Scholar 

  31. Lu P, Sun Y, Xiang H, Liang X, Yu Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater. 2018;8(8):1702434.

    Google Scholar 

  32. Wang P, Zhu K, Ye K, Gong Z, Liu R, Cheng K, Cao D. Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J Colloid Interface Sci. 2020;561:203.

    CAS  Google Scholar 

  33. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7895.

    CAS  Google Scholar 

  34. Zhou C, Wang D, Li A, Pan E, Liu H, Chen X, Song H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem Eng J. 2020;380:122457.

    CAS  Google Scholar 

  35. Nie W, Liu X, Xiao Q, Li L, Chen G, Li D, Zhong S. Hierarchical porous carbon anode materials derived from rice husks with a high capacity and long cycling stability for sodium ion batteries. ChemElectroChem. 2020;7(3):631.

    CAS  Google Scholar 

  36. Xie F, Xu Z, Jensen AC, Ding F, Au H, Feng J, Drew AJ. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. J Mater Chem A. 2019;7(48):27567.

    CAS  Google Scholar 

  37. Wan F, Wu XL, Guo JZ, Li JY, Zhang JP, Niu L, Wang RS. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy. 2015;13:450.

    CAS  Google Scholar 

  38. Zhao L, Zhao J, Hu YS, Li H, Zhou Z, Armand M, Chen L. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962.

    CAS  Google Scholar 

  39. Gu J, Gu Y, Yang S. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life. Chem Commun. 2017;53(94):12642.

    CAS  Google Scholar 

  40. Liu H, Luo SH, Hu DB, Liu X, Wang Q, Wang ZY, Zhang YH. Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Appl Surf Sci. 2019;495:143590.

    CAS  Google Scholar 

  41. Qi H, Cao L, Li J, Huang J, Xu Z, Jie Y, Wang C. Thin carbon layer coated porous Fe3O4 particles supported by rGO sheets for improved stable sodium storage. ChemistrySelect. 2019;4(9):2668.

    CAS  Google Scholar 

  42. Zhao Y, Wang F, Wang C, Wang S, Wang C, Zhao Z, Zhao D. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy. 2019;56:426.

    CAS  Google Scholar 

  43. Haridas AK, Heo J, Li X, Ahn HJ, Zhao X, Deng Z, Ahn JH. A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. Chem Eng J. 2020;385:123453.

    Google Scholar 

  44. Choi J, Yoon SU, Lee ME, Park SI, Myung Y, Jin HJ, Yun YS. High-performance nanohybrid anode based on FeS2 nanocubes and nitrogen-rich graphene oxide nanoribbons for sodium ion batteries. J Ind Eng Chem. 2020;81:61.

    CAS  Google Scholar 

  45. Lu Z, Zhai Y, Wang N, Zhang Y, Xue P, Guo M, Dou S. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chem Eng J. 2020;380:122455.

    CAS  Google Scholar 

  46. Wang F, Zhang W, Zhou H, Chen H, Huang Z, Yan Z, Kuang Y. Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem Eng J. 2020;380:122549.

    CAS  Google Scholar 

  47. Chen Z, Li S, Zhao Y, Aboud MFA, Shakir I, Xu Y. Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J Mater Chem A. 2019;7(46):26342.

    CAS  Google Scholar 

  48. Fan H, Qin B, Wang Z, Li H, Guo J, Wu X, Zhang J. Pseudocapacitive sodium storage of Fe1−xS@N-doped carbon for low-temperature operation. Sci China Mater. 2019;63(4):505.

    Google Scholar 

  49. Guo YM, Zhang LJ, Wang JT, Liang JM, Xi Li DG. Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim Acta. 2019;322:134763.

    CAS  Google Scholar 

  50. He Q, Rui K, Yang J, Wen Z. Fe7S8 nanoparticles anchored on nitrogen-doped graphene nanosheets as anode materials for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(35):29476.

    CAS  Google Scholar 

  51. Dong C, Guo L, Li H, Zhang B, Gao X, Tian F, Xu L. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2019;25:679.

    Google Scholar 

  52. Li Y, Guo R, Sun Y, Wang Y, Liu W, Pei H, Kong J. Facile synthesis of CoS2 nanoparticles/nitrogen-doped graphitic carbon/carbon nanotubes composites as advanced anode for sodium-ion batteries. ChemElectroChem. 2020. https://doi.org/10.1002/celc.201902053.

    Article  Google Scholar 

  53. He X, Bi L, Li Y, Xu C, Lin D. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim Acta. 2020;332:135453.

    CAS  Google Scholar 

  54. Zhang Z, Huang Y, Liu X, Chen C, Xu Z, Liu P. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon. 2020;157:244.

    CAS  Google Scholar 

  55. Zhang W, Yue Z, Wang Q, Zeng X, Fu C, Li Q, Li L. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem Eng J. 2020;380:122548.

    CAS  Google Scholar 

  56. Liao Y, Wu C, Zhong Y, Chen M, Cai L, Wang H, Li W. Highly dispersed Co–Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020;13(1):188.

    CAS  Google Scholar 

  57. Liu Y, Jiang W, Liu M, Zhang L, Qiang C, Fang Z. Ultrafine Co1−xS attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir. 2019;35(50):16487.

    CAS  Google Scholar 

  58. Yao X, Cheng H, Huang Y, Jiang Z, Han Q, Wang S. Double-layer carbon protected CoS2 nanoparticles as an advanced anode for sodium-ion batteries. RSC Adv. 2019;9(70):40956.

    CAS  Google Scholar 

  59. Liao SY, Cui TT, Zhang SY, Cai JJ, Zheng F, Liu YD, Min YG. Cross-nanoflower CoS2 in situ self-assembled on rGO sheet as advanced anode for lithium/sodium ion battery. Electrochim Acta. 2019;326:134992.

    CAS  Google Scholar 

  60. Zhang X, Ma T, Fang T, Gao Y, Gao S, Wang W, Liao L. A novel MoS2@C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage. J Alloys Compd. 2020;818:152821.

    CAS  Google Scholar 

  61. Choi JH, Park SK, Kang YC. N-doped carbon coated Ni–Mo sulfide tubular structure decorated with nanobubbles for enhanced sodium storage performance. Chem Eng J. 2020;383:123112.

    Google Scholar 

  62. Li J, Li J, Ding Z, Zhang X, Li Y, Lu T, Pan L. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem Eng J. 2019;378:122108.

    CAS  Google Scholar 

  63. Zhao Y, Wang J, Ma C, Li Y, Shi J, Shao Z. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chem Eng J. 2019;378:122168.

    CAS  Google Scholar 

  64. Fan S, Huang S, Chen Y, Shang Y, Wang Y, Kong D, Yang HY. Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 2019;23:17.

    Google Scholar 

  65. Cao D, Kang W, Huang Z, Li H, Yang M, Li J, Sun D. N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochim Acta. 2019;325:134925.

    CAS  Google Scholar 

  66. Ellis LD, Hatchard TD, Obrovac MN. Reversible insertion of sodium in tin. J Electrochem Soc. 2012;159(11):A1801.

    CAS  Google Scholar 

  67. Wang JW, Liu XH, Mao SX, Huang JY. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.

    CAS  Google Scholar 

  68. Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.

    CAS  Google Scholar 

  69. Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas JC, Bridges CA, Veith GM. Charact erization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources. 2013;234:48.

    CAS  Google Scholar 

  70. Baggetto L, Bridges CA, Jumas JC, Mullins DR, Carroll KJ, Meisner RA, Veith GM. The local atomic structure and chemical bonding in sodium tin phases. J Mater Chem A. 2014;2(44):18959.

    CAS  Google Scholar 

  71. Du Z, Dunlap RA, Obrovac MN. Investigation of the reversible sodiation of Sn foil by ex situ X-ray diffractometry and Mössbauer effect spectroscopy. J Alloys Compd. 2014;617:271.

    CAS  Google Scholar 

  72. Stratford JM, Mayo M, Allan PK, Pecher O, Borkiewicz OJ, Wiaderek KM, Grey CP. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc. 2017;139(21):7273.

    CAS  Google Scholar 

  73. Palaniselvam T, Goktas M, Anothumakkool B, Sun YN, Schmuch R, Zhao L, Adelhelm P. Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater. 2019;29(18):1900790.

    Google Scholar 

  74. Tian H, Liang Y, Repac J, Zhang S, LuoC Liou SC, Han W. Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J Phys Chem C. 2018;122(39):22232.

    CAS  Google Scholar 

  75. Luo L, Song J, Song L, Zhang H, Bi Y, Liu L, Wang G. Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett. 2019;11(1):63.

    CAS  Google Scholar 

  76. Sha M, Zhang H, Nie Y, Nie K, Lv X, Sun N, Sun X. Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A. 2017;5(13):6277.

    CAS  Google Scholar 

  77. Li J, Xu X, Luo Z, Zhang C, Yu X, Zuo Y, Liu J. Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochim Acta. 2019;304:246.

    CAS  Google Scholar 

  78. Xie H, Tan X, Luber EJ, Olsen BC, Kalisvaart WP, Jungjohann K, Buriak JM. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 2018;3(7):1670.

    CAS  Google Scholar 

  79. Ma W, Yin K, Gao H, Niu J, Peng Z, Zhang Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy. 2018;54:349.

    CAS  Google Scholar 

  80. Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. Chemsuschem. 2018;11(19):3376.

    CAS  Google Scholar 

  81. Huang B, Yang J, Li Y, Xiao S, Chen Q. Carbon encapsulated Sn–Co alloy: a stabilized tin-based material for sodium storage. Mater Lett. 2018;210:321.

    CAS  Google Scholar 

  82. Youn DH, Park H, Loeffler KE, Kim JH, Heller A, Mullins CB. Enhanced electrochemical performance of a tin-antimony alloy/N-doped carbon nanocomposite as a sodium-ion battery anode. ChemElectroChem. 2018;5(2):391.

    CAS  Google Scholar 

  83. Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.

    CAS  Google Scholar 

  84. Jin C, Wei M, Wang Y, Sui J, Yang R, Li C. PPy-derived sandwich-structured hollow carbon fiber anchoring Sn4P3 as anode materials with improved Na+ storage. ChemNanoMat. 2019;5(12):1471.

    Google Scholar 

  85. Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.

    CAS  Google Scholar 

  86. Lan D, Wang W, Li Q. Cu4SnP10 as a promising anode material for sodium ion batteries. Nano Energy. 2017;39:506.

    CAS  Google Scholar 

  87. Zhang W, Mao J, Pang WK, Guo Z, Chen Z. Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochim Acta. 2017;235:107.

    CAS  Google Scholar 

  88. Zhao X, Luo M, Zhao W, Xu R, Liu Y, Shen H. SnO2 nanosheets anchored on a 3D, bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(44):38006.

    CAS  Google Scholar 

  89. Qin J, Zhao N, Shi C, Liu E, He F, Ma L, He C. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017;5(22):10946.

    CAS  Google Scholar 

  90. Wang W, Shi L, Lan D, Li Q. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J Power Sources. 2018;377:1.

    CAS  Google Scholar 

  91. Chao D, Ouyang B, Liang P, Huong TTT, Jia G, Huang H, Fan HJ. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric na-ion storage. Adv Mater. 2018;30(49):1804833.

    Google Scholar 

  92. Kim JH, Jung YH, Yun JH, Ragupathy P, Kim DK. Enhancing the sequential conversion-alloying reaction of mixed Sn–S hybrid anode for efficient sodium storage by a carbon healed graphene oxide. Small. 2018;14(4):1702605.

    Google Scholar 

  93. Yuan S, Zhu YH, Li W, Wang S, Xu D, Li L, Zhang XB. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy-and power-density sodium-ion batteries. Adv Mater. 2017;29(4):1602469.

    Google Scholar 

  94. Cheng D, Yang L, Hu R, Liu J, Che R, Cui J, Zhao YJ. Sn–C and Se–C co-bonding SnSe/few-layer graphene micro-nano structure: a route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(40):36685.

    CAS  Google Scholar 

  95. Ren X, Wang J, Zhu D, Li Q, Tian W, Wang L, Huo K. Sn–C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy. 2018;54:322.

    CAS  Google Scholar 

  96. Zhao W, Ma X, Li Y, Wang G, Long X. Achieving ultrastable cyclability and pseudocapacitive sodium storage in SnSe quantum-dots sheathed in nitrogen doped carbon nanofibers. Appl Surf Sci. 2020;504:144455.

    Google Scholar 

  97. Lu X, Yang T, Xiong Q, Hu X, Guo J, Ji Z. Constructing hierarchical cobalt doped SnO2/carbon cluster as high reversible and high capacity anodes for sodium storage. J Electroanal Chem. 2019;848:113327.

    CAS  Google Scholar 

  98. Tang Q, Cui Y, Wu J, Qu D, Baker AP, Ma Y, Liu Y. Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries. Nano Energy. 2017;41:377.

    CAS  Google Scholar 

  99. Fu L, Li G, Shang C, Mao E, Huang L, Wang X, Zhou G. Reduced graphene oxide boosted ultrafine Cu2SnS3 nanoparticles for high-performance sodium storage. ChemElectroChem. 2019;6(11):2949.

    CAS  Google Scholar 

  100. Chen R, Li S, Liu J, Li Y, Ma F, Liang J, Li Q. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim Acta. 2018;282:973.

    CAS  Google Scholar 

Download references

Acknowledgements

This review was financially supported by Beijing Municipal High Level Innovative Team Building Program (Nos. IDHT20170502, IDHT20180504) and the 17 Connotation Development-Curriculum and Teaching Material Construction Quality Teaching Resources Project, Beijing University of Technology (No. KC2017BS020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Juan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JM., Zhang, LJ., XiLi, DG. et al. Research progress on tin-based anode materials for sodium ion batteries. Rare Met. 39, 1005–1018 (2020). https://doi.org/10.1007/s12598-020-01453-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01453-x

Keywords

Navigation