Skip to main content

Advertisement

Log in

Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti–Cu alloy has potential to be used in plastic surgery and dental implants due to its strong antibacterial properties, high strength and good corrosion resistance. In this paper, Ti–5Cu was anodic-oxidized to enhance the surface compatibility. The influence of the oxidation on the corrosion resistance, antibacterial properties and biological properties was investigated. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results showed that a double-layer oxide coating with dense inner layer and porous outside layer was formed on Ti–Cu sample. The oxide coating consisted mainly of TiO2, Cu2O and small amount of CuO, improved the corrosion resistance of Ti–Cu alloy by one order of magnitude due to the formation of the dense oxide inner layer, but high Cu ion release was detected. The plate count results showed that the antibacterial activity of Ti–Cu sample was improved to ≥ 99% due to the comprehensive function of CuO and Cu2O in the coating and Cu2+ release. Cell test results showed that the coating exhibited good cell compatibility, the porous surface structure improved the adhesion of cells, and Cu ion release promoted the cell proliferation.

Graphical abstract

摘要

Ti–Cu合金具有优良的抗菌性能, 高强度和良好的耐腐蚀性, 因此有潜力在整形外科和牙科植入物中使用。在本文中, 对Ti–5Cu进行了阳极氧化, 以增强其表面相容性。研究了氧化对耐蚀性, 抗菌性能和生物学性能的影响。 X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明, 在Ti–Cu样品上形成了具有致密的内层和多孔的外层的双层氧化物涂层。该氧化物涂层主要由TiO2, Cu2O和少量的CuO组成, 由于形成了致密的氧化物内层, 从而使Ti–Cu合金的耐蚀性提高了一个数量级, 并检测到高的Cu离子释放。平板计数结果表明, 由于CuO和Cu2O在涂层中的全面功能和Cu2+的释放, Ti–Cu样品的抗菌活性提高到 ≥ 99%。细胞测试结果表明, 该涂层表现出良好的细胞相容性, 其多孔表面结构改善了细胞的粘附性, 而铜离子的释放促进了细胞的增殖。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu R, Memarzadeh K, Chang B, Zhang Y, Ma M, Allaker RP, Ren L, Yang K. Antibacterial effect of copper-bearing titanium alloy (Ti–Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985.

    CAS  Google Scholar 

  2. Li BQ, Li CL, Wang ZX, Lu X. Preparation of Ti–Nb–Ta–Zr alloys for load-bearing biomedical applications. Rare Met. 2019;38(6):571.

    CAS  Google Scholar 

  3. Zhang ZZ, Zheng GT, Li HX, Yang L, Wang XY, Qin GW, Zhang EL. Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application. Mater Sci Eng C Mater Biol Appl. 2019;94:376.

    CAS  Google Scholar 

  4. Liu J, Li FB, Liu C, Wang HY, Ren BR, Yang K, Zhang EL. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C Mater Biol Appl. 2014;35:392.

    Google Scholar 

  5. Ma Z, Li M, Liu R, Ren L, Zhang Y, Pan H, Zhao Y, Yang K. In vitro study on an antibacterial Ti–5Cu alloy for medical application. J Mater Sci Mater Med. 2016;27(5):91.

    Google Scholar 

  6. Wang XY, Dong H, Liu J, Qin GW, Chen DF, Zhang EL. In vivo antibacterial property of Ti–Cu sintered alloy implant. Mater Sci Eng C. 2019;100:38.

    CAS  Google Scholar 

  7. Cai DG, Zhao XT, Yang L, Wang RX, Qin GW, Chen DF, Zhang EL. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus. J Mater Sci Technol. 2021;81:13.

    Google Scholar 

  8. Zhang EL, Zhao XT, Hu JL, Wang RX, Fu S, Qin GW. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6(8):2569.

    CAS  Google Scholar 

  9. D’Addona A, Ghassemian M, Raffaelli L, Manicone PF. Soft and hard tissue management in implant therapy-part I: surgical concepts. Int J Biomater. 2012;2012:531202.

    Google Scholar 

  10. Zhang W, Zhang S, Liu H, Ren L, Wang Q, Zhang Y. Effects of surface roughening on antibacterial and osteogenic properties of Ti–Cu alloys with different Cu contents. J Mater Sci Technol. 2021;88:158.

    CAS  Google Scholar 

  11. Cai DG, Bao MM, Wang XY, Yang L, Qin GW, Wang RX, Chen DF, Zhang EL. Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility. Rare Met. 2019;38(6):503.

    CAS  Google Scholar 

  12. Zhang EL, Fu S, Wang RX, Li HX, Liu HX, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    CAS  Google Scholar 

  13. Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium–copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91(1):373.

    Google Scholar 

  14. Zhang E, Li S, Ren J, Zhang L, Han Y. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti–Cu sintered alloys. Mater Sci Eng C. 2016;69:760.

    CAS  Google Scholar 

  15. Ji H, Zhao MC, Xie B, Zhao YC, Yin D, Gao C, Shuai C, Atrens A. Corrosion and antibacterial performance of novel selective-laser-melted (SLMed) Ti-xCu biomedical alloys. J Alloys Compd. 2021;864:158415.

    CAS  Google Scholar 

  16. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.

    CAS  Google Scholar 

  17. Botha SJ. Surface properties and bio-acceptability of Ti2O3 surfaces. Mater Sci Eng A. 1998;243(1):221.

    Google Scholar 

  18. Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-modified titanium implant materials: a way toward improved antibacterial properties. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.576969.

    Article  Google Scholar 

  19. Habazaki H, Onodera T, Fushimi K, Konno H, Toyotake K. Spark anodizing of β-Ti alloy for wear-resistant coating. Surf Coat Technol. 2007;201(21):8730.

    CAS  Google Scholar 

  20. Zhou H, Xu M, Huang Q, Cai Z, Li W. Anodic behavior of indium in KOH solution. J Appl Electrochem. 2009;39(10):1739.

    CAS  Google Scholar 

  21. Arsov LJD, Kormann C, Plieth W. In situ Raman spectra of anodically formed titanium dioxide layers in solutions of H2SO4, KOH, and HNO3. J Electrochem Soc. 2019;138(10):2964.

    Google Scholar 

  22. da Fonseca C, Traverse A, Tadjeddine A, Belo MDC. A characterization of titanium anodic oxides by X-ray absorption spectroscopy and grazing X-ray diffraction. J Electroanal Chem. 1995;388(1):115.

    Google Scholar 

  23. Ohtsuka T, Otsuki T. The aging of the anodic oxide of titanium during potentiostatic condition by ellipsometry. Corros Sci. 2003;45(8):1793.

    CAS  Google Scholar 

  24. Xia Z, Nanjo H, Aizawa T, Kanakubo M, Fujimura M, Onagawa J. Growth process of atomically flat anodic films on titanium under potentiostatical electrochemical treatment in H2SO4 solution. Surf Sci. 2007;601(22):5133.

    CAS  Google Scholar 

  25. Jin X, Gao L, Liu E, Yu F, Shu X, Wang H. Microstructure, corrosion and tribological and antibacterial properties of Ti–Cu coated stainless steel. J Mech Behav Biomed Mater. 2015;50:23.

    CAS  Google Scholar 

  26. Yang Z, Ma C, Wang W, Zhang M, Hao X, Chen S. Fabrication of Cu2O–Ag nanocomposites with enhanced durability and bactericidal activity. J Colloid Interface Sci. 2019;557:156.

    CAS  Google Scholar 

  27. Shaikh JS, Pawar RC, Moholkar AV, Kim JH, Patil PS. CuO–PAA hybrid films: chemical synthesis and supercapacitor behavior. Appl Surf Sci. 2011;257(9):4389.

    CAS  Google Scholar 

  28. Yan LL, Wang Y, Xiong LB, Li JL, Zhao HR, Wang BQ, Yu Y. Preparation of Cu2O nano array by copper anodic oxidation method and its photocatalytic sterilization performance. Chin J Inorg Chem. 2009;25(11):1960.

    CAS  Google Scholar 

  29. Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B: Biointerfaces. 2013;101:430.

    CAS  Google Scholar 

  30. Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ. Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res. 2010;141(1–3):3.

    Google Scholar 

  31. Leprince WY. Study of the initial stages of TiO2 growth on Si wafers by XPS. Surf Coat Technol. 2002;150(2):257.

    Google Scholar 

  32. Yahalom J, Zahavi J. Electrolytic breakdown crystallization of anodic oxide films on A1, Ta and Ti. Electrochim Acta. 1970;15(9):1429.

    CAS  Google Scholar 

  33. Shibata T, Zhu YC. The effect of film formation potential on the stochastic processes of pit generation on anodized titanium. Corros Sci. 1994;36(1):153.

    CAS  Google Scholar 

  34. Shibata T, Zhu YC. A stochastic analysis of flow velocity effects on the pit generation process on anodized titanium. Corros Sci. 1995;37(5):853.

    CAS  Google Scholar 

  35. Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(l-lactide). Biomaterials. 2005;26(21):4453.

    CAS  Google Scholar 

  36. Kolawole SK, Hai W, Zhang S, Sun Z, Siddiqui MA, Ullah I, Song W, Witte F, Yang K. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application. J Mater Sci Technol. 2020;50:31.

    Google Scholar 

  37. Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson GE. Crystallization of anodic titania on titanium and its alloys. Corros Sci. 2003;45(9):2063.

    CAS  Google Scholar 

  38. Wang J, Zhang S, Sun Z, Wang H, Ren L, Yang K. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti–Cu alloy for dental implant. J Mater Sci Technol. 2019;35(10):2336.

    Google Scholar 

  39. Chen M, Yang L, Zhang L, Han Y, Lu Z, Qin GW, Zhang EL. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Mater Sci Eng C. 2017;75:906.

    CAS  Google Scholar 

  40. Shi AQ, Zhu C, Fu S, Wang RX, Qin GW, Chen DF, Zhang EL. What controls the antibacterial activity of Ti–Ag alloy, Ag ion or Ti2Ag particles? Mater Sci Eng: C. 2020;109:110548.

    CAS  Google Scholar 

  41. Cao GJ, Cui B, Wang WQ, Tang GZ, Feng YC, Wang LP. Fabrication and photodegradation properties of TiO2 nanotubes on porous Ti by anodization. Trans Nonferrous Met Soc China. 2014;24(8):2581.

    CAS  Google Scholar 

  42. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009;33(6):587.

    CAS  Google Scholar 

  43. Karuppannan SK, Ramalingam R, Khalith SM, Dowlath MJ, Raiyaan GD, Arunachalam KD. Characterization, antibacterial and photocatalytic evaluation of green synthesized copper oxide nanoparticles. Biocatal Agric Biotechnol. 2021;31:101904.

    Google Scholar 

  44. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173.

    CAS  Google Scholar 

  45. Lee YJ, Kim S, Park SD, Park H, Huh YD. Morphology-dependent antibacterial activities of Cu2O. Mater Lett. 2011;65(5):818.

    CAS  Google Scholar 

  46. Zhang JT, Liu JF, Peng Q, Wang X, Li YD. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater. 2006;37(17):867.

    Google Scholar 

  47. Ren J, Wang W, Sun S, Zhang L, Wang L, Chang J. Crystallography facet-dependent antibacterial activity: the case of Cu2O. Ind Eng Chem Res. 2011;50(17):10366.

    CAS  Google Scholar 

  48. Jung HY, Seo Y, Park H, Huh YD. Morphology-controlled synthesis of octahedral-to-rhombic dodecahedral Cu2O microcrystals and shape-dependent antibacterial activities. Bull Korean Chem Soc. 2015;36(7):1828.

    CAS  Google Scholar 

  49. He LJ, Hao JC, Dai L, Zeng RC, Li SQ. Layer-by-layer assembly of gentamicin-based antibacterial multilayers on Ti alloy. Mater Lett. 2020;261:127001.

    CAS  Google Scholar 

  50. Burghardt I, Luthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials. 2015;44:36.

    CAS  Google Scholar 

  51. Siddiqui MA, Ullah I, Liu H, Zhang S, Ren L, Yang K. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti–3Cu alloy. J Mater Sci Technol. 2021;80:117.

    Google Scholar 

  52. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49(6):832.

    CAS  Google Scholar 

  53. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials. 2003;24(25):4663.

    CAS  Google Scholar 

  54. Xing J, Xia Z, Hu J, Zhang Y, Zhong L. Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corros Sci. 2013;75:212.

    CAS  Google Scholar 

  55. Roughead ZK, Lukaski HC. Inadequate copper intake reduces serum insulin-like growth factor -I and bone strength in growing rats fed graded amounts of copper and zinc. J Nutr. 2003;133(2):442.

    CAS  Google Scholar 

  56. Li S, Xie H, Li S, Kang YJ. Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway. Exp Biol Med (Maywood). 2012;237(1):77.

    CAS  Google Scholar 

  57. Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.

    Google Scholar 

  58. Zhang Y, Wang X, Ma Z, Bai B, Liu J, Yang L, Qin GW, Zhang EL. A potential strategy for in-stent restenosis: inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion. Mater Sci Eng: C. 2020;115:111090.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31971253) and Beijing Municipal Health Commission (Nos. BMHC-2019-9, BMHC-2018-4 and PXM2020-026275-000002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Fu Chen or Er-Lin Zhang.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Zhang, ZM., Zhang, JQ. et al. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation. Rare Met. 41, 594–609 (2022). https://doi.org/10.1007/s12598-021-01806-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01806-0

Keywords

Navigation