Skip to main content

Advertisement

Log in

In vitro study on an antibacterial Ti–5Cu alloy for medical application

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Health of human beings is subjected to severe threats from the spread of harmful bacteria and the implant-associated infection remains a serious problem in clinic. In this study, a copper-bearing antibacterial titanium alloy, Ti–5Cu, has been developed for dental and orthopedic implant applications. The microstructure, mechanical property, electrochemical corrosion behavior, in vitro antibacterial performance, cytocompatibility and hemocompatibility of the alloy are systematically investigated. The results reveal that the Ti–5Cu alloy which consists of α-phase matrix and intermetallic compound Ti2Cu not only possesses strong antibacterial activity against both E. coli and S. aureus, but also exhibits better mechanical properties than the commercial pure titanium. It is confirmed that the release of trace amount of Cu ions from the alloy plays an important role in killing bacteria. In spite of the ion release, Ti–5Cu alloy still reveals excellent corrosion resistance. Moreover, good cytocompatibility and superior hemocompatibility make Ti–5Cu alloy to be a potential solution that could prevent the peri-implant infection in dental and orthopaedic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eisenbarth E, Velten D, Muller M, Thull R, Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–13.

    Article  Google Scholar 

  2. Takada Y, Okuno O. Corrosion characteristics of alpha-Ti and Ti2Cu composing Ti-Cu alloys. Dent Mater J. 2005;24:610–6.

    Article  Google Scholar 

  3. Mareci D, Chelariu R, Gordin D-M, Ungureanu G, Gloriant T. Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomater. 2009;5:3625–39.

    Article  Google Scholar 

  4. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  Google Scholar 

  5. Takahashi M, Kikuchi M, Takada Y, Okuno O. Grindability and mechanical properties of experimental Ti–Au, Ti–Ag and Ti–Cu alloys. Int Congr Ser. 2005;1284:326–7.

    Article  Google Scholar 

  6. Hendriks JGE, van Horn JR, van der Mei HC, Busscher HJ. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25:545–56.

    Article  Google Scholar 

  7. Costerton JW. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  Google Scholar 

  8. Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect. 2001;49:87–93.

    Article  Google Scholar 

  9. Sperling JW, Kozak TKW, Hanssen AD, Cofield RH. Infection after shoulder arthroplasty. Clin Orthop Relat Res. 2001;382:206–16.

    Article  Google Scholar 

  10. Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91:373–80.

    Article  Google Scholar 

  11. Anguita-Alonso P, Hanssen AD, Patel R. Prosthetic-join infections. Expert Rev. 2005;3:797–804.

    Google Scholar 

  12. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–54.

    Article  Google Scholar 

  13. Harris WH, Sledge CB. Total hip and total knee replacement. N Engl J Med. 1990;323:725–31.

    Article  Google Scholar 

  14. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  Google Scholar 

  15. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.

    Article  Google Scholar 

  16. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–8.

    Article  Google Scholar 

  17. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967–82.

    Article  Google Scholar 

  18. Wang Z, Shen Y, Haapasalo M. Dental materials with antibiofilm properties. Dent Mater. 2014;30:e1–16.

    Article  Google Scholar 

  19. Rogers SS, Walle CVD, Waigh TA. Microrheology of bacterial biofilms in vitro: staphylococcus aureus and Pseudomonas aeruginosa. Langmuir. 2008;24:13549–55.

    Article  Google Scholar 

  20. Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials. 2010;31:6363–77.

    Article  Google Scholar 

  21. Hickok NJ, Shapiro IM. Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev. 2012;64:1165–76.

    Article  Google Scholar 

  22. Necula BS, Fratila-Apachitei LE, Zaat SA, Apachitei I, Duszczyk J. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5:3573–80.

    Article  Google Scholar 

  23. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–9.

    Article  Google Scholar 

  24. Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, et al. Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous Mesoporous Mater. 2011;146:216–22.

    Article  Google Scholar 

  25. Zhao LZ, Chu PK, Zhang YM, Wu ZF. Antibacterial coatings on titanium implants. J Biomed Mater Res B. 2009;91B:470–80.

    Article  Google Scholar 

  26. Ewald A, Gluckermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22.

    Article  Google Scholar 

  27. Liao JA, Zhu ZM, Mo AC, Li L, Zhang JC. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomed. 2010;5:261–7.

    Google Scholar 

  28. Stranak V, Wulff H, Rebl H, Zietz C, Arndt K, Bogdanowicz R, et al. Deposition of thin titanium–copper films with antimicrobial effect by advanced magnetron sputtering methods. Mater Sci Eng C. 2011;31:1512–9.

    Article  Google Scholar 

  29. Tamai K, Kawate K, Kawahara I, Takakura Y, Sakaki K. Inorganic antimicrobial coating for titanium alloy and its effect on bacteria. J Orthop Sci. 2009;14:204–9.

    Article  Google Scholar 

  30. Shirai T, Shimizu T, Ohtani K, Zen Y, Takaya M, Tsuchiya H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011;7:1928–33.

    Article  Google Scholar 

  31. Chen S, Guo Y, Chen S, Yu H, Ge Z, Zhang X, et al. Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles. J Mater Chem. 2012;22:9092.

    Article  Google Scholar 

  32. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–16.

    Article  Google Scholar 

  33. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, et al. A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J Mater Sci. 2005;16:883–8.

    Google Scholar 

  34. Nan L, Liu Y, Lu M, Yang K. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci. 2008;19:3057–62.

    Google Scholar 

  35. Ren L, Yang K, Guo L, Chai H-W. Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater Sci Eng C. 2012;32:1204–9.

    Article  Google Scholar 

  36. Zhang E, Li F, Wang H, Liu J, Wang C, Li M, et al. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C. 2013;33:4280–7.

    Article  Google Scholar 

  37. Yao X, Sun QY, Xiao L, Sun J. Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. J Alloy Compd. 2009;484:196–202.

    Article  Google Scholar 

  38. Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann H-G, et al. A dual function of copper in designing regenerative implants. Biomaterials. 2015;44:36–44.

    Article  Google Scholar 

  39. IPCS. Copper: environmental health criteria 200, international programme on chemical safety. Geneva: World Health Organization; 1998.

    Google Scholar 

  40. ISO-10993-5: Biological evaluation of medical devices—part 5: tests in vitro for cytotoxicity: in vitro methods. Arlington, VA: ANSI/AAMI; 2009(E).

  41. ISO 10993-15: Biological evaluation of medical devices e part 15: Identification and quantification of degradation products from metals and alloys. Arlington, VA: ANSI/AAMI; 2009.

  42. Wataha JC. Biocompatibility of dental casting alloys: a review. J Prosthet Dent. 2000;83:223–34.

    Article  Google Scholar 

  43. Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34:8018–29.

    Article  Google Scholar 

  44. Kikuchi M, Takada Y, Kiyosue S. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19:174–81.

    Article  Google Scholar 

  45. Okabe T, Kikuchi M, Ohkubo C, Koike M, Okuno O, Oda Y. The grindability and wear of Ti–Cu alloys for dental applications. JOM. 2004;56:46–8.

    Article  Google Scholar 

  46. Wang S, Ma Z, Liao Z, Song J, Yang K, Liu W. Study on improved tribological properties by alloying copper to CP–Ti and Ti–6Al–4V alloy. Mater Sci Eng C. 2015;57:123–32.

    Article  Google Scholar 

  47. Ma Z, Ren L, Liu R, Yang K, Zhang Y, Liao Z, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu Alloy. J Mater Sci Technol. 2015;31:723–32.

    Article  Google Scholar 

  48. Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, et al. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices. 2012;14:709–20.

    Article  Google Scholar 

  49. Tsao LC. Effect of Sn addition on the corrosion behavior of Ti–7Cu–Sn cast alloys for biomedical applications. Mater Sci Eng C. 2015;46:246–52.

    Article  Google Scholar 

  50. Goodman SL. Sheep, pig, and human platelet-material interactions with model cardiovascular biomaterials. J Biomed Mater Res. 1999;45:240–50.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial supports from National Basic Research Program of China (No. 2012CB619101), National Natural Science Foundation of China (Nos. 81271957, 51501218, 81572113), Guangdong Provincial Science and technology Projects (2014A010105033), Shenzhen Peacock Programs KQCX20140521115045444 and 110811003586331 and Basic Research Project of Shenzhen City (No. JCYJ20120616142847342).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhao or Ke Yang.

Additional information

The authors Zheng Ma, Mei Li and Rui Liu have contributed equally to this work and should be considered co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Li, M., Liu, R. et al. In vitro study on an antibacterial Ti–5Cu alloy for medical application. J Mater Sci: Mater Med 27, 91 (2016). https://doi.org/10.1007/s10856-016-5698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5698-1

Keywords

Navigation