Skip to main content

Advertisement

Log in

Selective hydroconversion of 2-methylfuran to pentanols on MWNT-supported Pt catalyst at ambient temperature

  • ORIGINAL ARTICLE
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The selective hydrogenolysis of C–O bond in furfural and its derivatives provides a sustainable route for transforming biomass-derived feedstocks into valued chemicals. Currently, the development of efficient catalysts which can effectively cleavage C–O bond under mild conditions remains a critical challenge. The present work reports Pt catalysts supported on multi-walled carbon nanotubes (MWNT) which are active in 2-methylfuran (2-MF) hydrogenolysis to form pentanols in liquid phase under mild conditions. The impact of various catalyst supports, active metals and reaction conditions in terms of metal loadings, solvent, time, pressure, etc., were explored. The 5 wt% Pt/MWNT catalyst demonstrated an excellent activity and selectivity with 100% 2-MF conversion and 53% pentanols (POLs) yield under 1 MPa H2 at an exceptional low temperature of 25 °C. The reaction mechanism was studied combing both the reactivity tests and characterization results, and it is found that the better catalytic performances of Pt/MWNT were correlated closely to the size of Pt nanoparticles and their interactions with the underlying MWNT support. Accordingly, a reaction pathway involving the adsorption of 2-MF parallel to the Pt nanoparticles and its subsequently selective C–O hydrogenolysis was proposed. This work showcases a promising catalyst for room-temperature biofuel production.

Graphical abstract

摘要

糠醛及其衍生物中C-O键选择性氢解, 为生物质衍生物转化为有价值的化学品提供了一条可持续的途径。当前, 开发能在温和条件下裂解C-O键的有效催化剂仍然是选择性催化的关键。本工作探究了负载在多壁碳纳米管 (MWNT) 上的Pt催化剂应用于室温条件下的2-甲基呋喃液相氢解制备戊醇。首先, 系统探究了各种催化剂载体, 活性金属和反应条件 (如溶剂、时间、压力等) 对2-甲基呋喃选择性氢解的影响。研究结果表明, 5 wt%的Pt/MWNT催化剂在25 ℃室温以及1 MPa H2下, 能实现100%的2-甲基呋喃转化率和53%的戊醇收率, 具有出色的活性和选择性。其次, 本工作还结合反应活性测试和表征结果对反应机理进行了研究, 发现Pt/MWNT催化剂更好的催化性能与Pt纳米粒子的大小及其与MWNT载体的相互作用密切相关。最后, 基于以上研究, 提出了Pt纳米颗粒平行于2-甲基呋喃的吸附构型及其可能的选择性C-O氢解的反应途径。本研究工作为室温下生物质的资源化催化利用提供了重要参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chem. 2010;12(9):1493.

    CAS  Google Scholar 

  2. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem Rev. 2018;118(22):11023.

    CAS  Google Scholar 

  3. Liu Q, Wang WQ, Yang Y, Liu XG, Xu SM. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Met. 2019;38(1):1.

    Google Scholar 

  4. Hu L, Zhao G, Hao WW, Tang X, Sun Y, Lin L, Liu SJ. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv. 2012;2(30):11184.

    CAS  Google Scholar 

  5. Cho A, Kim H, Iino A, Takagaki A, Ted OS. Kinetic and FTIR studies of 2-methyltetrahydrofuran hydrodeoxygenation on Ni2P/SiO2. J Catal. 2014;318(7):151.

    CAS  Google Scholar 

  6. Louie YL, Tang J, Hell AML, Bell AT. Kinetics of hydrogenation and hydrogenolysis of 2,5-dimethylfuran over noble metals catalysts under mild conditions. Appl Catal B-Environ. 2017;202(9):557.

    CAS  Google Scholar 

  7. Nakagawa Y, Tamura M, Omishige K. Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal. 2013;3(12):2655.

    CAS  Google Scholar 

  8. Ma YX, Guang Y, Wang H, Wang YX, Zhang Y, Fu Y. Cobalt nanocluster supported on ZrREnOx for the selective hydrogenation of biomass derived aromatic aldehydes and ketones in water. ACS Catal. 2018;8(2):1268.

    CAS  Google Scholar 

  9. Zhang J, Dong KJ, Luo WM, Guan HF. Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors. ACS Omega. 2018;3(6):6206.

    CAS  Google Scholar 

  10. Yang YD, Wang YY, Li SP, Shen XJ, Chen BF, Liu HZ, Han BX. Selective hydrogenation of aromatic furfurals into aliphatic tetrahydrofurfural derivatives. Green Chem. 2020;22(15):4937.

    CAS  Google Scholar 

  11. Chen LF, Ye JY, Yang YS, Yin P, Feng HS, Chen CY, Zhang X, Wei M, Truhlar DG. Catalytic conversion furfuryl alcohol to tetrahydrofurfuryl alcohol and 2-methylfuran at terrace, step, and corner sites on Ni. ACS Catal. 2020;10(13):7240.

    CAS  Google Scholar 

  12. Islam MJ, Granollers MM, Osatiashtiani A, Taylor MJ, Manayil JC, Parlett CMA, Isaacs MA, Kyriakou G. The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural. Appl Catal B-Environ. 2020;273:119062.

    CAS  Google Scholar 

  13. Qiu M, Guo TM, Xi R, Li DN, Qi XH. Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts. Appl Catal A Gen. 2020;602:117719.

    CAS  Google Scholar 

  14. Yu SS, Zhang SD, Li KN, Yang Q, Wang M, Cai D, Tan TW, Chen BQ. Furfuryl alcohol production with high selectivity by a novel visible-light driven biocatalysis process. ACS Sustain Chem Eng. 2020;8(42):15980.

    CAS  Google Scholar 

  15. Shang FF, Yu HX, Chu QY, Yang HY, Wang P, Cui HY, Wang M. Novel gamma-Al2O3 supported low concentrated Pd nanoalloy catalyst for improved hydrogenation ability of 2-methylfuran. ChemistrySelect. 2020;5(23):7021.

    CAS  Google Scholar 

  16. Ding F, Zhang YJ, Yuan GJ, Wang KJ, Dragutan I, Dragutan V, Cui YF, Wu J. Synthesis and catalytic performance of Ni/SiO2 for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran. J Nanomater. 2015;2015:6.

    Google Scholar 

  17. Sun DL, Sato S, Ueda W, Primo A, Garcia H, Corma A. Production of C4 and C5 alcohols from biomass-derived materials. Green Chem. 2016;18(9):2579.

    CAS  Google Scholar 

  18. Sun QH, Wang S, Liu HC. Selective hydrogenolysis of α-C–O bond in biomass-derived 2-furancarboxylic acid to 5-hydroxyvaleric acid on supported Pt catalysts at near-ambient temperature. ACS Catal. 2019;9(12):11413.

    CAS  Google Scholar 

  19. Wang J, Gong ZJ, Xu GD, Wu WF. Experimental study on catalytic performance of CO reduction and denitrification of rare earth tailings. Chin J Rare Met. 2020;44(12):1301.

    Google Scholar 

  20. Nativel D, Pelucchi M, Frassoldati A, Comandini A, Cuoci A, Ranzi E, Chaumeix N, Faravelli T. Laminar flame speeds of pentanol isomers: an experimental and modeling study. Combust Flame. 2016;166(11):1.

    CAS  Google Scholar 

  21. Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86.

    CAS  Google Scholar 

  22. Cann AF, Liao JC. Pentanol isomer synthesis in engineered microorganisms. Appl Microbiol Biot. 2009;85(4):893.

    Google Scholar 

  23. Huang KF, Brentzel ZJ, Barnett KJ, Dumesic JA, Huber GW, Maravelias CT. Conversion of furfural to 1,5-pentanediol: process synthesis and analysis. ACS Sustain Chem Eng. 2017;5(6):4699.

    CAS  Google Scholar 

  24. Liu F, Liu QY, Xu JM, Li L, Cui YT, Lang R, Li L, Su Y, Miao S, Sun H, Qiao BT, Wang AQ, Jérôme F, Zhang T. Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chem. 2018;8(20):1770.

    Google Scholar 

  25. Date NS, Chikate RC, Roh HS, Rode CV. Bifunctional role of Pd/MMT-K 10 catalyst in direct transformation of furfural to 1,2-pentanediol. Catal Today. 2018;309(8):195.

    CAS  Google Scholar 

  26. Yeh JY, Matsagar BM, Chen SS, Sung HL, Tsang DCW, Li YP, Wu KCW. Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. J Catal. 2020;390(7):46.

    CAS  Google Scholar 

  27. Dimas RGL, Rivera LR, Javier LO, Carlos J, Martínez VDX, Sandoval RL, García GDL, Carolina CS. Bimetallic Pd-Fe supported on γ-Al2O3 catalyst used in the ring opening of 2-methylfuran to selective formation of alcohols. Appl Catal A Gen. 2017;543(6):133.

    Google Scholar 

  28. Kang J, Liang XH, Guliants VV. Selective hydrogenation of 2-methylfuran and 2,5-dimethylfuran over atomic layer deposited platinum catalysts on multiwalled carbon nanotube and alumina supports. ChemCatChem. 2017;9(2):282.

    CAS  Google Scholar 

  29. Chia M, Pagán TYJ, Hibbitts D, Tan QH, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J Am Chem Soc. 2011;133(32):12675.

    CAS  Google Scholar 

  30. Zhang K, Li XL, Chen SY, Xu HJ, Deng J, Fu Y. Selective hydrogenolysis of furfural derivative 2-methyltetrahydrofuran into pentanediol acetate and pentanol acetate over Pd/C and Sc(OTf)3. Chemsuschem. 2018;11(4):726.

    CAS  Google Scholar 

  31. Biswas P, Lin JH, Kang J, Guliants VV. Vapor phase hydrogenation of 2-methylfuran over noble and base metal catalysts. Appl Catal A Gen. 2014;475(1):379.

    CAS  Google Scholar 

  32. Seemala B, Kumar R, Cai CM, Wyman CE, Christopher P. Single-step catalytic conversion of furfural to 2-pentanol over bimetallic Co–Cu catalysts. React Chem Eng. 2019;2(4):261.

    Google Scholar 

  33. Singh BK, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020;39(7):751.

    CAS  Google Scholar 

  34. Pino N, Sitthisa S, Tan QH, Souza T, López D, Resasco DE. Structure, activity, and selectivity of bimetallic Pd-Fe/SiO2 and Pd-Fe/γ-Al2O3 catalysts for the conversion of furfural. J Catal. 2017;350:30.

    CAS  Google Scholar 

  35. Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383.

    CAS  Google Scholar 

  36. Bahuguna A, Kumar A, Krishnan V. Carbon-support-based heterogeneous nanocatalysts: synthesis and applications in organic reactions. Asian J Org Chem. 2019;8(8):1263.

    CAS  Google Scholar 

  37. Li PB, Tan WT, Gao MM, Liu KG. Semisolid microstructural evolution of (CNTs + Sip)/AZ91D powder compacts prepared from powders by cold pressing and remelting. Rare Met. 2020;39(6):733.

    CAS  Google Scholar 

  38. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Szynkowska ML, Maniecki TP. Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol. Appl Catal B-Environ. 2016;185(11):281.

    CAS  Google Scholar 

  39. Date N, Parola V, Rode C, Testa M. Ti-doped Pd-Au catalysts for one-pot hydrogenation and ring opening of furfural. Catalysts. 2018;8(6):252.

    Google Scholar 

  40. Jenness GR, Wan WM, Chen JG, Vlachos DG. Reaction pathways and intermediates in selective ring opening of biomass-derived heterocyclic compounds by Iridium. ACS Catal. 2016;6(10):7002.

    CAS  Google Scholar 

  41. Wang C, Guo Z, Yang YH, Chang J, Borgna A. Hydrogenation of furfural as model reaction of bio-oil stabilization under mild conditions using multiwalled carbon nanotube (MWNT)-supported Pt catalysts. Ind Eng Chem Res. 2014;53(28):11284.

    CAS  Google Scholar 

  42. Cui K, Qian W, Shao ZJ, Zhao XG, Gong HH, Wei XJ, Wang JJ, Chen MY, Cao XM, Hou ZS. Ru nanoparticles on a sulfonated carbon layer coated SBA-15 for catalytic hydrogenation of furfural into 1,4-pentanediol. Catal Lett. 2021. https://doi.org/10.1007/s10562-020-03520-5.

    Article  Google Scholar 

  43. Liu QY, Qiao BT, Liu F, Zhang LL, Su Y, Wang AQ, Zhang T. Catalytic production of 1,4-pentanediol from furfural in a fixed-bed system under mild conditions. Green Chem. 2020;22(11):3532.

    CAS  Google Scholar 

  44. Bhogeswararao S, Srinivas D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J Catal. 2015;327:65.

    CAS  Google Scholar 

  45. Cao Z, Bu JH, Zhong ZQ, Sun CY, Zhang QS, Wang JD, Chen SH, Xie XW. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Appl Catal A Gen. 2019;578(4):105.

    CAS  Google Scholar 

  46. Pushkarev VV, Musselwhite N, An KJ, Alayoglu S, Somorjai GA. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett. 2012;10(12):5196.

    Google Scholar 

  47. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609.

    Google Scholar 

  48. Zhang WW, You X, Fang D, Yang P, Yi JH, Yu XH, Bao R, Li CJ, Liu YC, Tao JM, Yang F. Influence of acid-treated time of carbon nanotubes on mechanical property in carbon nanotubes reinforced copper matrix composites. Diam Relat Mat. 2020;109:11.

    Google Scholar 

  49. Zhou MH, Zhu HY, Niu L, Xiao GM, Xiao R. Catalytic hydroprocessing of furfural to cyclopentanol over Ni/CNTs catalysts: model reaction for upgrading of bio-oil. Catal Lett. 2013;144(2):235.

    Google Scholar 

  50. Pantoja CMA, Pérez RJF, González RH, Vorobiev VY, Martínez THV, Velasco SC. Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes. Chem Phys Mater. 2013;140(2):458.

    Google Scholar 

  51. White CM, Banks R, Hamerton L, Watts JF. Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Prog Org Coat. 2016;90(9):44.

    CAS  Google Scholar 

  52. Mierczynski P, Ciesielski R, Kedziora A, Nowosielska M, Kubicki J, Maniukiewicz W, Czylkowska A, Maniecki TP. Monometallic copper catalysts supported on multi-walled carbon nanotubes for the oxy-steam reforming of methanol. Reac Kinet Mech Cat. 2015;117(2):675.

    Google Scholar 

  53. Chen WY, Chen SM, Qian G, Song L, Chen D, Zhou XG, Duan XZ. On the nature of Pt-carbon interactions for enhanced hydrogen generation. J Catal. 2020;389(6):492.

    CAS  Google Scholar 

  54. Liu LJ, Lou H, Chen M. Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Appl Catal A Gen. 2018;550(10):1.

    CAS  Google Scholar 

  55. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl Chem. 1985;57(4):603.

    CAS  Google Scholar 

  56. Vikanova K, Redina E, Kapustin G, Chernova M, Tkachenko O, Nissenbaum V, Kustov L. Advanced room-temperature synthesis of 2,5-bis(hydroxymethyl)furan—a monomer for biopolymers—from 5-hydroxymethylfurfural. ACS Sustain Chem Eng. 2021;9(3):1161.

    CAS  Google Scholar 

  57. Yoshida HS, Onodera YC, Fujita S, Kawamori H, Arai M. Solvent effects in heterogeneous selective hydrogenation of acetophenone: differences between Rh/C and Rh/Al2O3 catalysts and the superiority of water as a functional solvent. Green Chem. 2015;17(3):1877.

    CAS  Google Scholar 

  58. Li Y, Cheng HY, Lin WW, Zhang C, Wu QF, Zhao FY, Arai M. Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catal Sci Technol. 2018;8(14):3580.

    CAS  Google Scholar 

  59. Dohade MG, Dhepe PL. Efficient hydrogenation of concentrated aqueous furfural solutions into furfuryl alcohol under ambient conditions in presence of PtCo bimetallic catalyst. Green Chem. 2017;19(4):1144.

    CAS  Google Scholar 

  60. Aliaga C, Tsung CK, Alayoglu S, Komvopoulos K, Yang PD, Somorjai GA. Sum frequency generation vibrational spectroscopy and kinetic study of 2-methylfuran and 2,5-dimethylfuran hydrogenation over 7 nm platinum cubic nanoparticles. J Phys Chem C. 2011;115(16):8104.

    CAS  Google Scholar 

  61. Wang SG, Vorotnikov V, Vlachos DG. A DFT study of furan hydrogenation and ring opening on Pd(111). Green Chem. 2014;16(2):736.

    Google Scholar 

  62. Bui P, Takagaki A, Kikuchi R, Oyama ST. Kinetic and infrared spectroscopy study of hydrodeoxygenation of 2-methyltetrahydrofuran on a nickel phosphide catalyst at atmospheric pressure. ACS Catal. 2016;6(11):7701.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Nanjing Tech University Start-up Fund (No. 38274017111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3390 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, B., Yin, CQ. et al. Selective hydroconversion of 2-methylfuran to pentanols on MWNT-supported Pt catalyst at ambient temperature. Rare Met. 41, 889–900 (2022). https://doi.org/10.1007/s12598-021-01801-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01801-5

Keywords

Navigation