Skip to main content

Advertisement

Log in

Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination

  • ORIGINAL ARTICLE
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid perovskite solar cells, one of the most promising photovoltaic devices, have made great progress in their efficiency and preparation technology. In this study, uniform, highly conductive LinNiOx (0 ≤ n ≤ 1; 0< x ≤ 3) films were prepared by electrochemical deposition for a range of Li concentration. Photovoltaic performance for the perovskite solar cells was enhanced through incorporation of the ion pair of Ni3+  ↔ Ni2+ as the interfacial passivation. Depending on the amount of lithium doping, controlled interfacial oxidation was induced by Ni3+. The Li0.32NiOx inhibited charge recombination, reduced the defect density, and enhanced the photocurrent density. A maximum power conversion efficiency of 20.44% was obtained by Li0.32NiOx. Further, in the long-term, in-air stabilities of unencapsulated LinNiOx perovskite solar cells were demonstrated.

Graphic abstract

摘要

有机-无机杂化钙钛矿太阳能电池是最有前途的光伏器件之一, 在其效率和制备技术方面取得了长足的进步. 在这项研究中, 通过电化学沉积在一定范围的锂浓度下制备了均匀, 高导电性的LinNiOx (0≤n≤1; 0<x≤3) 薄膜. 通过引入Ni3+↔Ni2+ 离子对作为界面钝化层, 钙钛矿太阳能电池的光伏性能得到增强. 根据锂掺杂量的不同, Ni3+ 会引起受控的界面氧化. Li0.32NiOx抑制了电荷复合, 降低了缺陷密度, 提高了光电流密度. Li0.32NiOx 获得了20.44% 的最大功率转换效率. 此外, 从长期来看,未封装的LinNiOx 钙钛矿太阳能电池在空气中的稳定性得到了证明.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.

    CAS  Google Scholar 

  2. Chang JH, Liu K, Lin SY, Yuan YB, Zhou CH, Yang JL. Solution-processed perovskite solar cells. J Cent South Univ. 2020;27(4):1104.

    CAS  Google Scholar 

  3. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 2015;350(6263):944.

    CAS  Google Scholar 

  4. Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science. 2019;363(6424):265.

    CAS  Google Scholar 

  5. Wang S, Jiang Y, Juarez-Perez EJ, Ono LK, Qi Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat Energy. 2016;2(1):16195.

    Google Scholar 

  6. Raga SR, Jung MC, Lee MV, Leyden MR, Kato Y, Qi Y. Influence of air annealing on high efficiency planar structure perovskite solar cells. Chem Mater. 2015;27(5):1597.

    CAS  Google Scholar 

  7. Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y. Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J Phys Chem C. 2017;121(7):3904.

    CAS  Google Scholar 

  8. McGettrick JD, Hooper K, Pockett A, Baker J, Troughton J, Carnie M, Watson T. Sources of Pb (0) artefacts during XPS analysis of lead halide perovskites. Mater Lett. 2019;251:98.

    CAS  Google Scholar 

  9. Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y. Effects of precursor ratios and annealing on electronic structure and surface composition of CH3NH3PbI3 perovskite films. J Phys Chem C. 2016;120(1):215.

    CAS  Google Scholar 

  10. Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q. Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells. Adv Mater. 2017;29(23):1606774.

    Google Scholar 

  11. Mali SS, Kim H, Kim HH, Shim SE, Hong CK. Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Mater Today. 2018;21(5):483.

    CAS  Google Scholar 

  12. Chen W, Zhou YC, Wang LJ, Wu YH, Tu B, Yu BB, Liu FZ, Tam HW, Wang G, Djurišić AB, Huang L, He ZB. Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv Mater. 2018;30(20):1800515.

    Google Scholar 

  13. Ge B, Qiao HW, Lin ZQ, Zhou ZR, Chen AP, Yang S, Hou Y, Yang HG. Deepening the valance band edges of NiOx contacts by alkaline earth metal doping for efficient perovskite photovoltaics with high open-circuit voltage. SOL RRL. 2019;3(8):1900192.

    Google Scholar 

  14. Ge B, Lin ZQ, Zhou ZR, Qiao HW, Chen AP, Hou Y, Yang S, Yang HG. Boric acid mediated formation and doping of NiOx layers for perovskite solar cells with efficiency over 21%. SOL RRL. 2021;5(4):2000810.

    CAS  Google Scholar 

  15. Zhang WN, Song J, Wang D, Deng KM, Wu JH, Zhang L. Dual interfacial modification engineering with P-type NiO nanocrystals for preparing efficient planar perovskite solar cells. J Phys Chem C. 2018;6(47):13034.

    CAS  Google Scholar 

  16. Tang J, Jiao D, Zhang L, Zhang XZ, Xu X, Yao C, Wu JH, Zhang L. High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals. Sol Energy. 2018;161:100.

    CAS  Google Scholar 

  17. Park JH, Seo J, Park S, Shin SS, Kim YC, Jeon NJ, Shin HW, Ahn TK, Noh JH, Yoon SC. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured P-type NiO electrode formed by a pulsed laser deposition. Adv Mater. 2015;27(27):4013.

    CAS  Google Scholar 

  18. Zhang BJ, Su J, Guo X, Zhou L, Lin ZH, Feng LP, Zhang JC, Chang JJ, Hao Y. NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv Sci. 2020;7(11):1903044.

    CAS  Google Scholar 

  19. Juybari HA, Bagheri-Mohagheghi MM, Shokooh-Saremi M. Nickel–lithium oxide alloy transparent conducting films deposited by spray pyrolysis technique. J Alloy Compd. 2011;509(6):2770.

    CAS  Google Scholar 

  20. Corani A, Li MH, Shen PS, Chen P, Guo TF, El Nahhas A, Zheng K, Yartsev A, Sundström V, Ponseca CS. Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as P-type contact electrode. J Phys Chem Lett. 2016;7(7):1096.

    CAS  Google Scholar 

  21. Cheng Y, Li M, Liu X, Cheung SH, Chandran HT, Li HW, Xu X, Xie YM, So SK, Yip HL. Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy. 2019;61:496.

    CAS  Google Scholar 

  22. Rambau B, Ramasastry C, Chowdari BVR. Radiation damage studies of Co2+ and Ni2+ doped NH4Cl crystals. Phys Status Solidi B. 1983;118(1):381.

    Google Scholar 

  23. Hou Y, Tang LJ, Qiao HW, Zhou ZR, Zhong YL, Zheng LR, Chen MJ, Yang S, Yang HG. Ni-Co-O hole transport materials: gap sates assisted hole extraction with superior electrical conductivity. J Mater Chem A. 2019;7(36):20905.

    CAS  Google Scholar 

  24. Yin X, Guo Y, Xie H, Que W, Kong LB. Nickel oxide as efficient hole transport materials for perovskite solar cells. SOL RRL. 2019;3(5):1900001.

    Google Scholar 

  25. Srinivas C, Tirupanyam BV, Satish A, Seshubai V, Sastry DL, Caltun OF. Effect of Ni2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanoparticles. J Magn Magn Mater. 2015;382:15.

    CAS  Google Scholar 

  26. Thakur UK, Kumar P, Gusarov S, Kobryn AE, Riddell S, Goswami A, Kazi M, Alam KM, Savela S, Kar P, Thundat T, Meldrum A, Shankar K. Consistently high Voc values in p-i-n type perovskite solar cells using Ni3+-doped NiO nanomesh as the hole transporting layer. ACS Appl Mater. 2020;12(10):11467.

    CAS  Google Scholar 

  27. Traore B, Pedesseau L, Blancon J, Tretiak S, Mohite AD, Even J, Katan C, Kepenekian M. Importance of vacancies and doping in the hole-transporting nickel oxide interface with halide perovskites. ACS Appl Mater Interf. 2020;12(5):6633.

    CAS  Google Scholar 

  28. Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou HP, Cao BQ. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J Mater Chem C. 2017;5(28):7084.

    CAS  Google Scholar 

  29. Lee SW, Gallant BM, Byon HR, Hammond PT, Shao-Horn Y. Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ Sci. 2011;4(6):1972.

    CAS  Google Scholar 

  30. Subbiah AS, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar SK. Inorganic hole conducting layers for perovskite-based solar cells. J Phys Chem Lett. 2014;5(10):1748.

    CAS  Google Scholar 

  31. Wu MS, Yang CH, Wang MJ. Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques. Electrochim Acta. 2008;54(2):155.

    CAS  Google Scholar 

  32. Girolamo DD, Matteocci F, Piccinni M, Carlo AD, Dini D. Anodically electrodeposited NiO nanoflakes as hole selective contact in efficient air processed p-i-n perovskite solar cells. Sol Energy Mater Sol Cells. 2020;205:110288.

    Google Scholar 

  33. Zhao J, Chen H, Shi J, Gu J, Dong X, Gao J, Ruan M, Yu L. Electrochemical and oxygen desorption properties of nanostructured ternary compound NaxMnO2 directly templated from mesoporous SBA-15. Microporous Mesoporous Mat. 2008;116(1–3):432.

    CAS  Google Scholar 

  34. Wu CC, Yang CF. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel–lithium oxide on indium tin oxide substrate. ACS Appl Mater Interf. 2013;5(11):4996.

    CAS  Google Scholar 

  35. Zhang BP, Zhang YR, Dong Y, Li JF, Chen C. Effect of Li content on microstructure and dielectric properties of LixTiyNi1−xyO thin films. Ferroelectrics. 2007;357(1):92.

    CAS  Google Scholar 

  36. Saki Z, Kári S, Boschloo G, Taghavinia N. The effect of lithium doping in solution: processed nickel oxide films for perovskite solar cells. Chem Phys Chem. 2019;20(24):3322.

    CAS  Google Scholar 

  37. Liu K, Liu Y, Zhu HF, Dong XL, Wang YG, Wang CX, Xia YY. NaTiSi2O6/C composite as a novel anode material for lithium-ion batteries. Acta Phys Chim Sin. 2020;36(11):1912030.

    Google Scholar 

  38. Jin X, Xu Q, Liu H, Yuan X, Xia Y. Excellent rate capability of Mg doped Li [Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta. 2014;136:19.

  39. Gao XX, Luo W, Zhang Y, Hu R, Zhang B, Züttel A, Feng Y, Nazeeruddin MK. Stable and high–efficiency methylammonium-free perovskite solar cells. Adv Mater. 2020;32(9):1905502.

    CAS  Google Scholar 

  40. He J, Zhao J, Shen T, Hidaka H, Serpone N. Photosensitization of colloidal titania particles by electron injection from an excited organic dye–antennae function. J Phys Chem B. 1997;101(44):9027.

    CAS  Google Scholar 

  41. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science. 2015;347(6225):967.

    CAS  Google Scholar 

  42. Bube RH. Trap density determination by space-charge-limited currents. J Appl Phys. 1962;33(5):1733.

    CAS  Google Scholar 

  43. Hang Y, Liu X, Li P, Duan Y, Hu X, Li F, Song Y. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy. 2019;56:733.

    Google Scholar 

  44. Son DY, Kim SG, Seo JY, Lee SH, Shin H, Lee D, Park NG. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J Am Chem Soc. 2018;140(4):1358.

    CAS  Google Scholar 

  45. Fang Z, He H, Gan L, Li J, Ye Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv Sci. 2018;5(12):1800736.

    Google Scholar 

  46. Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Correction to: research progress in electron transport layer in perovskite solar cells. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01375-8.

    Article  Google Scholar 

  47. Guo Y, Jin Z, Yuan S, Zhao JS, Ai XC. Effects of interfacial energy level alignment on carrier dynamics and photovoltaic performance of inverted perovskite solar cells. J Power Sources. 2020;452:227845.

    CAS  Google Scholar 

  48. Chen H, Motuzas J, Martens W, Diniz da Costa JC. Ceramic metal oxides with Ni2+ active phase for the fast degradation of orange II dye under dark ambiance. Ceram Int. 2018;44 (6):6634.

  49. Gamsjäger H, Bugajski J, Gajda T, Lemire R, Preis W. Chemical Thermodynamics, North Holland Elsevier Science Publishers B. V. Amsterdam, The Netherlands, 2005; 89.

  50. Yang TY, Gregori G, Pellet N, Grätzel M, Maier J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew Chem Int Ed. 2015;54(27):7905.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11772207), the Natural Science Foundation of Hebei Province (Nos. A2019210204 and E2019210292), the Special Project of Hebei Provincial Central Government Guiding Local Science and Technology Development (No. 216Z4302G), the Youth Top-notch Talents Supporting Plan of Hebei Province and the support of State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics (No. MCMS-E-0519G04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Jin Zhao, Yan-Jun Hu or Cun-Fa Gao.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Additional information

Jin-Jin Zhao, Xiao Su, Zhou Mi and Ying Zhang contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JJ., Su, X., Mi, Z. et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Met. 41, 96–105 (2022). https://doi.org/10.1007/s12598-021-01800-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01800-6

Keywords

Navigation