Skip to main content
Log in

Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and electrical conductivity. We firstly attempted to explain and verify the difference in the electrical conductivity as a function of temperature between p-type crystalline and polycrystalline SnSe by considering the grain boundary effects in the polycrystalline samples. On the basis of 2% Na doping to optimize the carrier concentration, the carrier mobility is improved by further introducing In, leading to enhanced carrier mobility from 3 to 9 cm2·V−1·s−1 in polycrystalline SnSe. Moreover, In doping introduces extra resonant levels in SnSe, which increases the density of states near Fermi level and leads to an enhanced band effective mass. Large Seebeck coefficient of ~ 205 μV·K−1 at 300 K and maximum power factor of ~ 7.5 μW·cm−1·K−2 at 773 K can be obtained in the Sn0.975Na0.02In0.005Se sample, leading to a competitively high dimensionless figure of merit (ZT) value exceeding 1.1 at 773 K.

摘要

晶体 SnSe 由于出色的电声传输性能, 不断表现出优异的热电特性。但是, 相对于晶体, 多晶 SnSe 的电导率和载流子迁移率呈现数量级的降低。首先, 我们试图通过考虑多晶样品中晶界的影响来解释 p 型晶体 SnSe 和多晶 SnSe 的电导率随温度变化的差异。通过掺杂 2% 的 Na 来优化多晶 SnSe 的载流子浓度, 在此基础上引入 In 提高了基体的载流子迁移率, 样品的室温迁移率由 3 cm2·V-1·s-1增加到 9 cm2·V-1·s-1。此外, 通过在多晶 SnSe 中掺杂 In 引入了额外的共振能级, 增加了费米能级附近的态密度, 提高了能带有效质量 。引入 In 之后, Sn0.975Na0.02In0.005Se样品在 300 K 时的塞贝克系数从 ~ 137提高到 ~ 205 μ V·K-1, 在 773 K 时的最大功率因子从 ~ 3.9提 高到 ~ 7.5 μ W·cm-1·K-2, 使热电优值 (ZT) 在 773 K 时超过了 1.1

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  CAS  Google Scholar 

  2. Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem Int Ed. 2009;48(46):8616–39.

    Article  CAS  Google Scholar 

  3. Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(16):12123.

    Article  CAS  Google Scholar 

  4. Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Mater. 2015;1(2):92.

    Google Scholar 

  5. Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nat. 2012;489(7416):414.

    Article  CAS  Google Scholar 

  6. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Sci. 2008;321(5888):554.

    Article  CAS  Google Scholar 

  7. Zhang H, Li JT, Ding FZ, Qu F, Li H, Gu HW. Combustion synthesis of ZrNiSn half-Heusler thermoelectric materials. Chin J Rare Met. 2019;43(4):337.

    Google Scholar 

  8. Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nat. 2011;473(7345):66.

    Article  CAS  Google Scholar 

  9. Rahnamaye Aliabad HA, Sabazadeh Z, Abareshi A. Electronic structure and thermal properties of bulk and nano-layer of TAlO2 (T=Cu, Ag and Au) delafossite oxides. Rare Met. 2019;38(10):905.

    Article  CAS  Google Scholar 

  10. Zhao LD, Wu HJ, Hao SQ, Wu CI, Zhou XY, Biswas K, He JQ, Hogan TP, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci. 2013;6(11):3346.

    Article  CAS  Google Scholar 

  11. Zhang X, Wang DY, Wu HJ, Yin MJ, Pei YL, Gong SK, Huang L, Pennycook SJ, He JQ, Zhao LD. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy Environ Sci. 2017;10(11):2420.

    Article  CAS  Google Scholar 

  12. Xiao Y, Wu HJ, Cui J, Wang DY, Fu LW, Zhang Y, Chen Y, He JQ, Pennycook SJ, Zhao LD. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity, energy environ. Sci. 2018;11(9):2486.

    CAS  Google Scholar 

  13. Qin BC, Xiao Y, Zhou YM, Zhao LD. Thermoelectric transport properties of Pb-Sn-Te-Se system. Rare Met. 2018;37(4):343.

    Article  CAS  Google Scholar 

  14. Qu WW, Zhang XX, Yuan BF, Zhao LD. Homologous layered InFeO3(ZnO)m: new promising abradable seal coating materials. Rare Met. 2018;37(2):79.

    Article  CAS  Google Scholar 

  15. Chen CL, Wang H, Chen YY, Day T, Snyder GJ. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A. 2014;2(29):11171.

    Article  CAS  Google Scholar 

  16. Li JC, Li D, Qin XY, Zhang J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scr Mater. 2017;126:6.

    Article  CAS  Google Scholar 

  17. Wei TR, Tan GJ, Zhang XM, Wu CF, Li JF, Dravid VP, Snyder GJ, Kanatzidis MG. Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J Am Chem Soc. 2016;138(28):8875.

    Article  CAS  Google Scholar 

  18. Wu D, Pei YL, Wang Z, Wu HJ, Huang L, Zhao LD, He JQ. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv Funct Mater. 2014;24(48):7763.

    Article  CAS  Google Scholar 

  19. Xiao Y, Zhao LD. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 2018;3(1):1.

    Article  CAS  Google Scholar 

  20. Tan GJ, Zhao LD, Shi FY, Doak JW, Lo SH, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc. 2014;136(19):7006–17.

    Article  CAS  Google Scholar 

  21. Ge ZH, Song DS, Chong XY, Zheng FS, Jin L, Qian X, Zheng L, Dunin-Borkowski RE, Qin P, Feng J, Zhao LD. Boosting the thermoelectric performance of (Na, K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J Am Chem Soc. 2017;139(28):9714.

    Article  CAS  Google Scholar 

  22. Tan GJ, Shi FY, Hao SQ, Chi H, Zhao LD, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J Am Chem Soc. 2015;137(15):5100.

    Article  CAS  Google Scholar 

  23. Zhao WY, Liu ZY, Wei P, Zhang QJ, Zhu WT, Su XL, Tang XF, Yang JH, Liu Y, Shi J, Chao YM, Lin SQ, Pei YZ. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat Nanotechnol. 2017;12(1):55.

    Article  CAS  Google Scholar 

  24. Xiao Y, Chang C, Pei YL, Wu D, Peng KL, Zhou XY, Gong SK, He JQ, Zhang YS, Zeng Z, Zhao LD. Origin of low thermal conductivity in SnSe. Phys Rev B. 2016;94(12):125203.

    Article  Google Scholar 

  25. Chang C, Zhao LD. Anharmoncity and low thermal conductivity in thermoelectrics. Mater Today Phys. 2018;4:50.

    Article  Google Scholar 

  26. Liu HL, Shi X, Xu FF, Zhang LL, Zhang WQ, Chen LD, Li Q, Uher C, Day T, Snyder GJ. Copper ion liquid-like thermoelectrics. Nat Mater. 2012;11(5):422.

    Article  Google Scholar 

  27. Pei YL, Chang C, Wang Z, Yin MJ, Wu MH, Tan GJ, Wu HJ, Chen YX, Zheng L, Gong SK, Zhu TJ, Zhao XB, Huang L, He JQ, Kanatzidis MG, Zhao LD. Multiple converged conduction bands in K2Bi8Se13: a promising thermoelectric material with extremely low thermal conductivity. J Am Chem Soc. 2016;138(50):16364.

    Article  CAS  Google Scholar 

  28. Wang DY, Huang ZW, Zhang Y, Hao LJ, Wang GT, Deng SH, Wang HL, Chen J, He LH, Xiao B, Xu YD, Pennycook SJ, Wu HJ, Zhao LD. Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Sci China Mater. 2020;63(9):1759.

    Article  CAS  Google Scholar 

  29. Zhou YM, Zhao LD. Promising thermoelectric bulk materials with 2D structures. Adv Mater. 2017;29(45):1702676.

    Article  Google Scholar 

  30. Zhao LD, Lo SH, Zhang YS, Sun H, Tan GJ, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nat. 2014;508(7496):373.

    Article  CAS  Google Scholar 

  31. Zhao LD, Tan GJ, Hao SQ, He JQ, Pei YL, Chi H, Wang H, Gong SK, Xu HB, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Sci. 2016;351(6269):141.

    Article  CAS  Google Scholar 

  32. Qin BC, Zhang Y, Wang DY, Zhao Q, Gu BC, Wu HJ, Zhang HJ, Ye BJ, Pennycook SJ, Zhao LD. Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies. J Am Chem Soc. 2020;142(12):5901.

    Article  CAS  Google Scholar 

  33. Qin BC, Wang DY, He WK, Zhang Y, Wu HJ, Pennycook SJ, Zhao LD. Realizing high thermoelectric performance in p-type SnSe through crystal structure modification. J Am Chem Soc. 2019;141(2):1141.

    Article  CAS  Google Scholar 

  34. Chang C, Wu MH, He DS, Pei YL, Wu CF, Wu XF, Yu HL, Zhu FY, Wang KD, Chen Y, Huang L, Li JF, He JQ, Zhao LD. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Sci. 2018;360(6390):778.

    Article  CAS  Google Scholar 

  35. Chang C, Wang DY, He DS, He WK, Zhu FY, Wang GT, He JQ, Zhao LD. Realizing high-ranged out-of-plane ZTs in n-type SnSe crystals through promoting continuous phase transition. Adv Energy Mater. 2019;9(28):1901334.

    Article  Google Scholar 

  36. Zhao Q, Wang DY, Qin BC, Wang GT, Qiu YT, Zhao LD. Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS. J Solid State Chem. 2019;273:85.

    Article  CAS  Google Scholar 

  37. Zhao Q, Qin BC, Wang DY, Qiu YT, Zhao LD. Realizing high thermoelectric performance in polycrystalline SnSe via silver doping and germanium alloying. ACS Appl Energy Mater. 2020;3(3):2049.

    Article  CAS  Google Scholar 

  38. Singh NK, Bathula S, Gahtori B, Tyagi K, Haranath D, Dhar A. The effect of doping on thermoelectric performance of p-type SnSe: promising thermoelectric material. J Alloy Compd. 2016;668:152.

    Article  CAS  Google Scholar 

  39. Chen YX, Ge ZH, Yin MJ, Feng D, Huang XQ, Zhao WY, He JQ. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv Funct Mater. 2016;26(37):6836.

    Article  CAS  Google Scholar 

  40. Peng KL, Lu X, Zhan H, Hui S, Tang XD, Wang GW, Dai JY, Uher C, Wang GY, Zhou XY. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci. 2016;9(2):454.

    Article  CAS  Google Scholar 

  41. Zhang JH, Xu JT, Tan XJ, Wang HX, Liu GQ, Shao HZ, Yu B, Yue S, Jiang J. Optimized orientation and enhanced thermoelectric performance in Sn0.97Na0.03Se with Te addition. J Mater Chem C. 2019;7(9):2653.

    Article  CAS  Google Scholar 

  42. Wei TR, Wu CF, Zhang XZ, Tan Q, Sun L, Pan Y, Li JF. Thermoelectric transport properties of pristine and Na-doped SnSe1-xTex polycrystals. Phys Chem Chem Phys. 2015;17(44):30102.

    Article  CAS  Google Scholar 

  43. Liang S, Xu J, Noudem JG, Wang H, Tan X, Liu GQ, Shao H, Yu B, Yue S, Jiang J. Thermoelectric properties of textured polycrystalline Na0.03Sn0.97Se enhanced by hot deformation. J Mater Chem A. 2018;6(46):23730.

    Article  CAS  Google Scholar 

  44. Peng KL, Wu H, Yan YC, Guo LJ, Wang GY, Lu X, Zhou XY. Grain size optimization for high-performance polycrystalline SnSe thermoelectrics. J Mater Chem A. 2017;5(27):14053.

    Article  CAS  Google Scholar 

  45. Xiao Y, Wu HJ, Wang DY, Niu CL, Pei YL, Zhang Y, Spanopoulos I, Witting IT, Li X, Pennycook SJ, Snyder GJ, Kanatzidis MG, Zhao LD. Amphoteric indium enables carrier engineering to enhance the power factor and thermoelectric performance in n-type AgnPb100InnTe100+2n(LIST). Adv Energy Mater. 2019;9(17):1900414.

    Article  Google Scholar 

  46. Zhang Q, Liao BL, Lan YC, Lukas K, Liu WS, Esfarjani K, Opeil C, Broido D, Chen G, Ren ZF. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci U S A. 2013;110(33):13261.

    Article  CAS  Google Scholar 

  47. Mao J, Wu YX, Song SW, Shuai J, Liu ZH, Pei YZ, Ren ZF. Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5. Mater Today Phys. 2017;3:1.

    Article  Google Scholar 

  48. Mao J, Wu YX, Song SW, Zhu Q, Shuai J, Liu ZH, Pei YZ, Ren ZF. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Lett. 2017;2(10):2245.

    Article  CAS  Google Scholar 

  49. Wang S, Hui S, Peng KL, Bailey TP, Zhou XY, Tang XF, Uher C. Grain boundary scattering effects on mobilities in p-type polycrystalline SnSe. J Mater Chem C. 2017;5(39):10191.

    Article  CAS  Google Scholar 

  50. Levinson J, Shepherd FR, Scanlon PJ, Westwood WD, Rider M. Conductivity behavior in polycrystalline semiconductor thin film transistors. J Appl Phys. 1982;53(2):1193.

    Article  CAS  Google Scholar 

  51. Seto JYW. The electrical properties of polycrystalline silicon films. J Appl Phys. 1975;46(12):5247.

    Article  CAS  Google Scholar 

  52. Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder GJ. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ Sci. 2018;11(2):429.

    Article  CAS  Google Scholar 

  53. Slade TJ, Grovogui JA, Kuo JJ, Anand S, Bailey TP, Wood M, Uher C, Snyder GJ, Dravid VP, Kanatzidis MG. Understanding the thermally activated charge transport in NaPb(m)SbQ(m+2) (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering. Energy Environ Sci. 2020;13(5):1509.

    Article  CAS  Google Scholar 

  54. Schnering HGV, Wiedemeier H. The high temperature structure of β-SnS and β-SnSe and the B16-to-B33 type λ-transition path. Z fur Krist. 1981;156:143.

    Google Scholar 

  55. Serraon-Sanchez F, Nemes NM, Dura OJ, Fernandez-Diaz MT, Martinez JL, Alonso JA. Structural phase transition in polycrystalline SnSe: a neutron diffraction study in correlation with thermoelectric properties. J Appl Crystallogr. 2016;49:2138.

    Article  Google Scholar 

  56. Sist M, Zhang JW, Iversen BB. Crystal structure and phase transition of thermoelectric SnSe. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater. 2016;72(3):310.

    Article  CAS  Google Scholar 

  57. Chere EK, Zhang Q, Dahal K, Cao F, Mao J, Ren ZF. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J Mater Chem A. 2016;4(5):1848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Nos. 51772012 and 51671015), Beijing Natural Science Foundation (No. JQ18004), and National Postdoctoral Program for Innovative Talents (No. BX20200028). L.D.Z. thanks for the support from the National Science Fund for Distinguished Young Scholars (No. 51925101) and the high performance computing (HPC) resources at Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Dong Zhao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YP., Qin, BC., Wang, DY. et al. Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Met. 40, 2819–2828 (2021). https://doi.org/10.1007/s12598-021-01753-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01753-w

Keywords

Navigation