Skip to main content

Advertisement

Log in

Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Carbonaceous materials are promising anode candidates for potassium-ion batteries, but currently the unsatisfactory cycling and rate performances due to the sluggish diffusion kinetic and serious structure damage during K+ insertion/extraction limit their practical application. Herein, a series of sulfur-doped porous carbons (SPCs) were prepared via a template-assisted freeze-drying followed by the carbonization and sulfuration processes at different temperatures. Among the three as-synthesized samples, SPC-600 exhibits the highest specific capacity (407 mAh·g−1 at 0.10 A·g−1), the best rate (242 mAh·g−1 at 2.00 A·g−1) and cycling performance (286 mAh·g−1 after 800 cycles at 0.50 A·g−1). All the SPCs display higher capacities than the undoped carbon materials. The excellent electrochemical performance of SPC can be ascribed to the abundant three-dimensional porous structure together with S-doping in the disordered carbon, which is favor of providing adequate reaction active sites as well as fast ion/electron transport paths. The density functional theory (DFT) calculations further demonstrate that the sulfur-doping can promote K-ion adsorption and storage. Meanwhile, the kinetic analyses reveal that surface-induced capacitive mechanism dominates the K-ion storage process in SPCs, which contributes to ultrafast charge storage. This work provides an effective strategy for fabricating high-performance potassium-ion storage electrode materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):1.

    Article  Google Scholar 

  2. Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39(9):989.

    Article  CAS  Google Scholar 

  3. Ji BF, Zhang F, Wu NZ, Tang YB. A dual-carbon battery based on potassium-ion electrolyte. Adv Energy Mater. 2017;7(20):1700920.

    Article  Google Scholar 

  4. Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.

    Article  CAS  Google Scholar 

  5. Gao A, Li M, Guo NN, Qiu D, Li Y, Wang SH, Lu X, Wang F, Yang R. K-birnessite electrode obtained by ion exchange for potassium-ion batteries: insight into the concerted ionic diffusion and K storage mechanism. Adv Energy Mater. 2019;9(1):1802739.

    Article  Google Scholar 

  6. Liu QD, Han F, Zhou JF, Li Y, Chen L, Zhang FQ, Zhou DW, Ye C, Yang JX, Wu X, Liu JS. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping. ACS Appl Mater Interfaces. 2020;12(18):20838.

    Article  CAS  Google Scholar 

  7. Ji BF, Yao WJ, Zheng YP, Kidkhunthod P, Zhou XL, Tunmee S, Sattayaporn S, Cheng HM, He HY, Tang YB. A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat Commun. 2020;11(1):1.

    Article  CAS  Google Scholar 

  8. Li YP, Zhang QB, Yuan YF, Liu HD, Yang CH, Lin Z, Lu J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv Energy Mater. 2020;10(23):2000717.

    Article  CAS  Google Scholar 

  9. Wang ZY, Dong KZ, Wang D, Luo SH, Liu X, Liu YG, Wang Q, Zhang YH, Hao AM, He CN, Shi CS, Zhao NQ. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem Eng J. 2020;384:123327.

    Article  CAS  Google Scholar 

  10. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N. An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater. 2017;7(24):1602911.

    Article  Google Scholar 

  11. Wu ZR, Wang LP, Huang J, Zou J, Chen SL, Cheng H, Jiang C, Gao P, Niu XB. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim Acta. 2019;306:446.

    Article  CAS  Google Scholar 

  12. Liu Y, Sun ZH, Sun X, Lin Y, Tan K, Sun JF, Liang LW, Hou LR, Yuan CZ. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew Chem-Int Edit. 2020;59(6):2473.

    Article  CAS  Google Scholar 

  13. Yu A, Pan QG, Zhang M, Xie DH, Tang YB. Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv Funct Mater. 2020;30(24):2001440.

    Article  CAS  Google Scholar 

  14. Zhao WQ, Shen YP, Zhang H, Wang YS, Wu YZ, Wu HS, Zou MC, Wang Q, Li YB, Cao AY. Porous-carbon aerogels with tailored sub-nanopores for high cycling stability and rate capability potassium-ion battery anodes. ACS Appl Mater Interfaces. 2020;12(24):27045.

    Article  CAS  Google Scholar 

  15. Liu DY, Yang L, Chen ZY, Zou GQ, Hou HS, Hu JG, Ji XB. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci Bull. 2020;65(12):1003.

    Article  CAS  Google Scholar 

  16. Zhao XX, Xiong PX, Meng JF, Liang YQ, Wang JW, Xu YH. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J Mater Chem A. 2017;5(36):19237.

    Article  CAS  Google Scholar 

  17. Cao B, Zhang Q, Liu H, Xu B, Zhang SL, Zhou TF, Mao JF, Pang WK, Guo ZP, Li A, Zhou JS, Chen XH, Song HH. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater. 2018;8(25):1801149.

    Article  Google Scholar 

  18. Hong WW, Zhang Y, Yang L, Tian Y, Ge P, Hu JG, Wei WF, Zou GQ, Hou HS, Ji XB. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038.

    Article  CAS  Google Scholar 

  19. Sun N, Zhu QZ, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater. 2019;29(51):1906282.

    Article  CAS  Google Scholar 

  20. Fan L, Ma RF, Zhang QF, Jia XX, Lu BA. Graphite anode for a potassium-ion battery with unprecedented performance. Angew Chem-Int Edit. 2019;58(31):10500.

    Article  CAS  Google Scholar 

  21. Liu Y, He DL, Tan QW, Wan Q, Han K, Liu ZW, Li P, An FQ, Qu XH. A synergetic strategy for an advanced electrode with Fe3O4 embedded in a 3D N-doped porous graphene framework and a strong adhesive binder for lithium/potassium ion batteries with an ultralong cycle lifespan. J Mater Chem A. 2019;7(33):19430.

    Article  CAS  Google Scholar 

  22. Han K, Liu ZW, Li P, Yu QY, Wang W, Lao CY, He DL, Zhao W, Suo GQ, Guo H, Song L, Qin ML, Qu XH. High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Mater. 2019;22:185.

    Article  Google Scholar 

  23. Wang J, Wang D, Dong KZ, Hao AM, Luo SH, Liu YG, Wang Q, Zhang YH, Wang ZY. Fabrication of porous carbon with controllable nitrogen doping as anode for high-performance potassium-ion batteries. ChemElectroChem. 2019;6(14):3699.

    Article  CAS  Google Scholar 

  24. Qi XJ, Huang KS, Wu X, Zhao W, Wang H, Zhuang QC, Ju ZC. Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon. 2018;131:79.

    Article  CAS  Google Scholar 

  25. Xie YH, Chen Y, Liu L, Tao P, Fan MP, Xu N, Shen XW, Yan CL. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv Mater. 2017;29(35):1702268.

    Article  Google Scholar 

  26. Ruan JF, Zhao YH, Luo SN, Yuan T, Yang JH, Sun DL, Zheng SY. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network. Energy Storage Mater. 2019;23:46.

    Article  Google Scholar 

  27. An YL, Tian Y, Li Y, Xiong SL, Zhao GQ, Feng JK, Qian YT. Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(38):21966.

    Article  CAS  Google Scholar 

  28. Ruan JF, Wu X, Wang Y, Zheng SY, Sun DL, Song Y, Chen M. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J Mater Chem A. 2019;7(33):1935.

    Article  Google Scholar 

  29. Chang XQ, Zhou XL, Ou XW, Lee CS, Zhou JW, Tang YB. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.

    Article  CAS  Google Scholar 

  30. Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Li TQ, Han Y, Wang YS, Tian J, Lin N, Qian YT. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv Energy Mater. 2019;9(34):1901676.

    Article  Google Scholar 

  31. Zhang Y, Li L, Hong WW, Qiu TY, Xu LQ, Zou GQ, Hou HS, Ji XB, Li S. Influence of P doping on Na and K storage properties of N-rich carbon nanosheets. Mater Chem Phys. 2019;236:121809.

    Article  CAS  Google Scholar 

  32. Lu J, Wang CL, Yu HL, Gong SP, Xia GL, Jiang P, Xu PP, Yang K, Chen QW. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv Funct Mater. 2019;29(49):1906126.

    Article  CAS  Google Scholar 

  33. Ma HL, Qi XJ, Peng DQ, Chen YX, Wei DH, Ju ZC, Zhuang QC. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. Chem Sel. 2019;4(39):11488.

    CAS  Google Scholar 

  34. Li YP, Zhong WT, Yang CH, Zheng FH, Pan QC, Liu YZ, Wang G, Xiong XH, Liu ML. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem Eng J. 2019;358:1147.

    Article  CAS  Google Scholar 

  35. Chen M, Wang W, Liang X, Gong S, Liu J, Wang Q, Guo SJ, Yang H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater. 2018;8(19):1800171.

    Article  Google Scholar 

  36. Li JL, Qin W, Xie JP, Lei H, Zhu YQ, Huang WY, Xu X, Zhao ZJ, Mai WJ. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy. 2018;53:415.

    Article  CAS  Google Scholar 

  37. Qian J, Wu F, Ye YS, Zhang ML, Huang YX, Xing Y, Qu W, Li L, Chen RJ. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv Energy Mater. 2018;8(16):1703159.

    Article  Google Scholar 

  38. Li WD, Wang DZ, Gong ZJ, Guo XS, Liu J, Zhang ZH, Li GC. Superior potassium-ion storage properties by engineering pseudocapacitive sulfur/nitrogen-containing species within three-dimensional flower-like hard carbon architectures. Carbon. 2020;161:97.

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  CAS  Google Scholar 

  40. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phy. 2010;132(15):154104.

    Article  Google Scholar 

  41. Ma CR, Zhang WM, He YS, Gong Q, Che HY, Ma ZF. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale. 2016;8(7):4121.

    Article  CAS  Google Scholar 

  42. Chen TQ, Pan LK, Lu T, Fu CL, Chua DHC, Sun Z. Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries. J Mater Chem A. 2014;2(5):1263.

    Article  CAS  Google Scholar 

  43. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.

    Article  CAS  Google Scholar 

  44. Liu JH, Xu ZQ, Wu MQ, Wang YS, Karim Z. Capacity contribution induced by pseudo-capacitance adsorption mechanism of anode carbonaceous materials applied in potassium-ion battery. Front Chem. 2019;7:640.

    Article  Google Scholar 

  45. Zhang WL, Ming J, Zhao WL, Dong XC, Hedhili MN, Costa PMFJ, Alshareef HN. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv Funct Mater. 2019;29(35):1903641.

    Article  Google Scholar 

  46. Chen C, Wu MQ, Wang YS, Zaghib K. Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J Power Sources. 2019;444:227310.

    Article  CAS  Google Scholar 

  47. Qiu DP, Guan JY, Li M, Kang CH, Wei JY, Li Y, Xie ZY, Wang F, Yang R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2019;29(32):1903496.

    Article  Google Scholar 

  48. Lee JH, Kwon SH, Kwon S, Cho M, Kim KH, Han TH, Lee SG. Tunable electronic properties of nitrogen and sulfur doped graphene: density functional theory approach. Nanomaterials. 2019;9(2):268.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51871046, 51902046, 52071073, 51874079, 51571054, 51771046 and 51674068), the Natural Science Foundation of Liaoning Province (No. 201602257), the Natural Science Foundation of Hebei Province (Nos. E2019501097, E2018501091 and E2020501004), the Science and Technology Project of Hebei Province (No. 15271302D), the Training Foundation for Scientific Research of Talents Project Hebei Province (No. A2016005004), the Young Talents Program in University of Hebei Province (No. BJ2018014), Hebei Province Higher Education Science and Technology Research Project (No. QN2017103) and the Fundamental Research Funds for the Central Universities (Nos. N182304017, N182304015, N172302001 and N172304044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Yuan Wang or Yan-Guo Liu.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2 Mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Tian, KH., Wang, J. et al. Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Met. 40, 2464–2473 (2021). https://doi.org/10.1007/s12598-021-01715-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01715-2

Keywords

Navigation