Skip to main content
Log in

Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-based material has been regarded as one of the most promising electrode materials for potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile “in situ self-template bubbling method for synthesizing interlayer-tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the high reversible capacity (360.6 mAh·g−1@0.05 A·g−1), excellent rate capability (158.6 mAh·g−1@10.0 A·g−1) and ultralong high-rate cycling stability (82.8% capacity retention after 2,000 cycles at 5.0 A·g−1). Theoretical simulation reveals the correlations between interlayer distance and K-ion diffusion kinetics. Experimentally, deliberately designed consecutive cyclic voltammetry (CV) measurements, ex situ Raman tests, galvanostatic intermittent titration technique (GITT) method decipher the origin of the excellent rate performance by disentangling the synergistic effect of interlayer and pore-structure engineering. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work may deepen the fundamental understandings of carbon-based PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors, and dual-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

    Article  Google Scholar 

  2. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    Article  CAS  Google Scholar 

  3. Li, G Z.; Huang, B.; Pan, Z. F.; Su, X. Y.; Shao, Z. P.; An, L. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030–2053.

    Article  CAS  Google Scholar 

  4. Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

    Article  CAS  Google Scholar 

  5. Xu, Y. S.; Duan, S. Y.; Sun, Y. G.; Bin, D. S.; Tao, X. S.; Zhang, D.; Liu, Y.; Cao, A. M.; Wan, L. J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334–4352.

    Article  CAS  Google Scholar 

  6. Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

    Article  Google Scholar 

  7. Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

    Article  CAS  Google Scholar 

  8. Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 2016, 164, A54–A60.

    Article  Google Scholar 

  9. Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340–361.

    Article  CAS  Google Scholar 

  10. Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

    Article  Google Scholar 

  11. Xiao, N.; McCulloch, W. D.; Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 2017, 139, 9475–9478.

    Article  CAS  Google Scholar 

  12. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J.Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  13. Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

    Article  CAS  Google Scholar 

  14. Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

    Article  Google Scholar 

  15. Li, D. P.; Zhu, M.; Chen, L.; Chen, L.; Zhai, W.; Ai, Q.; Hou, G. M.; Sun, Q.; Liu, Y.; Liang, Z. et al. Sandwich-like FeCl3@C as high-performance anode materials for potassium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1800606.

    Article  Google Scholar 

  16. Li, L.; Liu, L. J.; Hu, Z.; Lu, Y.; Liu, Q. N.; Jin, S.; Zhang, Q.; Zhao, S.; Chou, S. L. Understanding high-rate K+-solvent co-intercalation in natural graphite for potassium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 12917–12924.

    Article  CAS  Google Scholar 

  17. Liu, Z. M.; Wang, J.; Jia, X. X.; Li, W. L.; Zhang, Q. F.; Fan, L.; Ding, H. B.; Yang, H. G.; Yu, X. Z.; Li, X. K. et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS Nano 2019, 13, 10631–10642.

    Article  CAS  Google Scholar 

  18. Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

    Article  CAS  Google Scholar 

  19. Li, D. J.; Cheng, X. L.; Xu, R.; Wu, Y.; Zhou, X. F.; Ma, C.; Yu, Y. Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 19929–19938.

    Article  CAS  Google Scholar 

  20. Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1802386.

    Article  Google Scholar 

  21. Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J G..; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601–610.

    Article  CAS  Google Scholar 

  22. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  Google Scholar 

  23. Zhang, W. L.; Yin, J.; Sun, M. L.; Wang, W. X.; Chen, C. L.; Altunkaya, M.; Emwas, A. H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H. N. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 2020, 32, 2000732.

    Article  CAS  Google Scholar 

  24. Ma, M. Z.; Zhang, S. P.; Yao, Y.; Wang, H. Y.; Huang, H. J.; Xu, R.; Wang, J. W.; Zhou, X. F.; Yang, W. J.; Peng, Z. Q. et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 2020, 32, 2000958.

    Article  CAS  Google Scholar 

  25. Zhang, E. J.; Jia, X. X.; Wang, B.; Wang, J.; Yu, X. Z.; Lu, B. G. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 2020, 7, 2000470.

    Article  CAS  Google Scholar 

  26. Feng, Y. H.; Chen, S. H.; Wang, J.; Lu, B. G. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J. Energy Chem. 2020, 43, 129–138.

    Article  Google Scholar 

  27. Hu, J. X.; Xie, Y. Y.; Yin, M.; Zhang, Z. Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage. J. Energy Chem. 2020, 49, 327–334.

    Article  Google Scholar 

  28. Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. L.; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 2020, 27, 212–225.

    Article  Google Scholar 

  29. Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Article  Google Scholar 

  30. Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

    Article  CAS  Google Scholar 

  31. Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

    Article  CAS  Google Scholar 

  32. Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351–1358.

    Article  CAS  Google Scholar 

  33. Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth–potassium batteries. Chem. Sci. 2018, 9, 6193–6198.

    Article  CAS  Google Scholar 

  34. Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687–4691.

    Article  CAS  Google Scholar 

  35. Li, D. P.; Sun, Q.; Zhang, Y. M.; Chen, L.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. ChemSusChem 2019, 12, 2689–2700.

    Article  CAS  Google Scholar 

  36. Fang, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.

    Article  Google Scholar 

  37. Li, D. P.; Dai, L. N.; Ren, X. H.; Ji, F. J.; Sun, Q.; Zhang, Y. M.; Ci, L. J. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci., in press, DOI: https://doi.org/10.1039/D0EE02919J.

  38. Sun, Q.; Li, D. P.; Dai, L. N.; Liang, Z.; Ci, L. J. Structural engineering of SnS2 encapsulated in carbon nanoboxes for high-performance sodium/potassium-ion batteries anodes. Small 2020, 16, 2005023.

    Article  CAS  Google Scholar 

  39. Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

    Article  Google Scholar 

  40. Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534–1547.

    Article  CAS  Google Scholar 

  41. Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  CAS  Google Scholar 

  42. Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk–shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.

    Article  Google Scholar 

  43. Boebinger, M. G.; Yeh, D.; Xu, M.; Miles, B. C.; Wang, B. L.; Papakyriakou, M.; Lewis, J. A.; Kondekar, N. P.; Cortes, F. J. Q.; Hwang, S. et al. Avoiding fracture in a conversion battery material through reaction with larger ions. Joule 2018, 2, 1783–1799.

    Article  CAS  Google Scholar 

  44. Liu, Y.; Sun, Z. H.; Sun, X.; Lin, Y.; Tan, K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem., Int. Ed. 2020, 59, 2473–2482.

    Article  CAS  Google Scholar 

  45. Li, L.; Zhang, W. C.; Wang, X.; Zhang, S. L.; Liu, Y. J.; Li, M. H.; Zhu, G. J.; Zheng, Y.; Zhang, Q.; Zhou, T. F. et al. Hollow-carbon-templated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 2019, 13, 7939–7948.

    Article  CAS  Google Scholar 

  46. Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802–809.

    Article  CAS  Google Scholar 

  47. Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res. 2019, 12, 2997–3002.

    Article  CAS  Google Scholar 

  48. Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2–N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305–9315.

    Article  CAS  Google Scholar 

  49. Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. G. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

    Article  Google Scholar 

  50. Zhang, R. D.; Huang, J. J.; Deng, W. Z.; Bao, J. Z.; Pan, Y. L.; Huang, S. P.; Sun, C. F. Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16474–16479.

    Article  CAS  Google Scholar 

  51. Fedotov, S. S.; Samarin, A. S.; Nikitina, V. A.; Aksyonov, D. A.; Sokolov, S. A.; Zhugayevych, A.; Stevenson, K. J.; Khasanova, N. R.; Abakumov, A. M.; Antipov, E. V. Reversible facile Rb+ and K+ ions de/insertion in a KTiPO4-type RbVPO4F cathode material. J. Mater. Chem. A 2018, 6, 14420–14430.

    Article  CAS  Google Scholar 

  52. An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72.

    Article  CAS  Google Scholar 

  53. Ma, G. Y.; Huang, K. S.; Ma, J. S.; Ju, Z. C.; Xing, Z.; Zhuang, Q. C. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 2017, 5, 7854–7861.

    Article  CAS  Google Scholar 

  54. Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.

    Article  CAS  Google Scholar 

  55. Chen, M.; Wang, Y.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

    Article  Google Scholar 

  56. Zhao, R. Z.; Di, H. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 mxene and n-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257.

    Article  CAS  Google Scholar 

  57. Olsson, E.; Cottom, J.; Au, H.; Guo, Z. Y.; Jensen, A. C. S.; Alptekin, H.; Drew, A. J.; Titirici, M. M.; Cai, Q. Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 2020, 30, 1908209.

    Article  CAS  Google Scholar 

  58. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

    Article  CAS  Google Scholar 

  59. Li, Z. F.; Bommier, C.; Chong, Z. S.; Jian, Z. L.; Surta, T. W.; Wang, X. F.; Xing, Z. Y.; Neuefeind, J. C.; Stickle, W. F.; Dolgos, M. et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 2017, 7, 1602894.

    Article  Google Scholar 

  60. Rebelo, S. L. H.; Guedes, A.; Szefczyk, M. E.; Pereira, A. M.; Araújo, J. P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 2016, 18, 12784–12796.

    Article  CAS  Google Scholar 

  61. Shao, H.; Wu, Y. C.; Lin, Z. F.; Taberna, P. L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039.

    Article  CAS  Google Scholar 

  62. Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578–45585.

    Article  CAS  Google Scholar 

  63. Zeng, S. F.; Zhou, X. F.; Wang, B.; Feng, Y. Z.; Xu, R.; Zhang, H. B.; Peng, S. M.; Yu, Y. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A 2019, 7, 15774–15781.

    Article  CAS  Google Scholar 

  64. Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.

    Article  Google Scholar 

  65. Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

    Article  CAS  Google Scholar 

  66. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electro-chemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  67. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  CAS  Google Scholar 

  68. Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460.

    Article  CAS  Google Scholar 

  69. Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569–1578.

    Article  CAS  Google Scholar 

  70. Shen, Z.; Cao, L.; Rahn, C. D.; Wang, C. Y. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J. Electrochem. Soc. 2013, 160, A1842–A1846.

    Article  CAS  Google Scholar 

  71. Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

    Article  Google Scholar 

  72. Gómez-Santos, G. Thermal van der Waals interaction between graphene layers. Phys. Rev. B 2009, 80, 245424.

    Article  Google Scholar 

  73. Valencia, F.; Romero, A. H.; Ancilotto, F.; Silvestrelli, P. L. Lithium adsorption on graphite from density functional theory calculations. J. Phys. Chem. B 2006, 110, 14832–14841.

    Article  CAS  Google Scholar 

  74. Badger, R. M. A relation between internuclear distances and bond force constants. J. Chem. Phys. 1934, 2, 128–131.

    Article  CAS  Google Scholar 

  75. Cioslowski, J.; Liu, G. H.; Mosquera Castro, R. A. Badger’s rule revisited. Chem. Phys. Lett. 2000, 331, 497–501.

    Article  CAS  Google Scholar 

  76. Herschbach, D. R.; Laurie, V. W. Anharmonic potential constants and their dependence upon bond length. J. Chem. Phys. 1961, 35, 458–464.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by School Research Startup Expenses of Harbin Institute of Technology (Shenzhen) (No. DD29100027), the National Natural Science Foundation of China (No. 52002094), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110756), China Postdoctoral Science Foundation (No. 2019M661276), High-level Talents’ Discipline Construction Fund of Shandong University (No. 31370089963078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deping Li or Lijie Ci.

Additional information

Conflict of interests

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Sun, Q., Zhang, Y. et al. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 14, 4502–4511 (2021). https://doi.org/10.1007/s12274-021-3324-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3324-0

Keywords

Navigation