Skip to main content
Log in

Structural, mechanical, thermodynamic and electronic properties of Pt3M (M = Al, Co, Hf, Sc, Y, Zr) compounds under high pressure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, the impacts of pressure on the structural, mechanical, thermodynamic and electronic properties of typical Pt3M (M = Al, Co, Hf, Sc, Y, Zr) compounds were investigated systematically by the first-principles density function theory calculations. The calculated lattice parameters, volume and elastic constants of Pt3M compounds are in good agreement with available experimental and calculation values. With the increase in pressure, the lattice parameters and volume of Pt3M compounds decrease, while the elastic constants, bulk modulus, shear modulus and Young’s modulus increase. The variations in Pugh’s ratio and Poisson’s ratio indicate that these Pt3M compounds are mechanically stable and ductile. The mechanical anisotropy of these Pt3M compounds is enhanced by rising pressure. Thermodynamic analysis indicates that sound velocity and Debye temperature increase with the increase in stress. The charge distribution does not change obviously, implying that no phase transition occurs in the range of 0–100 GPa.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang FM, Lian LX, Liu Y, Gong XF. Mechanism of adding rhenium to improve hot corrosion resistance of nickel-based single-crystal superalloys. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01584-1.

    Article  Google Scholar 

  2. Wen YF, Sun J, Huang J. First—principles study of stacking fault energies in Ni3Al intermetallic alloys. Trans Nonferrous Metal Soc. 2012;22(3):661.

    Google Scholar 

  3. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312(5770):90.

    CAS  Google Scholar 

  4. Hill P, Cornish L, Fairbank G. New developments in high-temperature platinum alloys. JOM. 2001;53(10):19.

    CAS  Google Scholar 

  5. Yamabe-Mitarai Y, Gu Y, Huang C, Völkl R, Harada H. Platinum-group-metal-based intermetallics as high-temperature structural materials. JOM. 2004;56(9):34.

    CAS  Google Scholar 

  6. Jiang Y, Wei LL, He J, Guo HB. Processing of a low-cost γ–γ′ NiPtAl coating with improved oxidation resistance. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1139-2.

    Article  Google Scholar 

  7. Völkl R, Wenderoth M, Preussner J, Vorberg S, Fischer B, Yamabe-Mitarai Y, Harada H, Glatzel UJMS. Development of a precipitation-strengthened Pt-base superalloy. Mater Sci Eng A. 2009;510(15):328.

    Google Scholar 

  8. Wenderoth M, Vorberg S, Fischer B, Yamabe-Mitarai Y, Harada H, Glatzel U, Völkl RJMS. Influence of Nb, Ta and Ti on microstructure and high-temperature strength of precipitation-hardened Pt-base alloys. Mater Sci Eng A. 2008;483:509.

    Google Scholar 

  9. Wenderoth M, Völkl R, Vorberg S, Yamabe-Mitarai Y, Harada H, Glatzel UJI. Microstructure, oxidation resistance and high-temperature strength of γ′ hardened Pt-base alloys. Intermetallics. 2007;15(4):539.

    CAS  Google Scholar 

  10. Völkl R, Yamabe-Mitarai Y, Huang C, Harada H. Stabilizing the L12 structure of Pt3Al (r) in the Pt-Al-Sc system. Metall Mater Trans A. 2005;36(11):2881.

    Google Scholar 

  11. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2018;38(2):95.

    Google Scholar 

  12. Vorberg S, Fischer B, Wenderoth M, Glatzel U, Völkl R. A TEM investigation of the γ/γ′ phase boundary in Pt-based alloys. JOM. 2005;57(3):49.

    CAS  Google Scholar 

  13. Vorberg S, Wenderoth M, Fischer B, Glatzel U, Völkl RJJ. Pt-Al-Cr-Ni superalloys: heat treatment and microstructure. JOM. 2004;56(9):40.

    CAS  Google Scholar 

  14. Fairbank GB, Humphreys CJ, Kelly A, Jones CN. Ultra-high temperature intermetallics for the third millennium. Intermetallics. 2000;8(9):1091.

    CAS  Google Scholar 

  15. Hill PJ, Biggs T, Ellis P, Hohls J, Taylor S, Wolff IM. An assessment of ternary precipitation-strengthened Pt alloys for ultra-high temperature applications. Mater Sci Eng A. 2001;301(2):167.

    Google Scholar 

  16. Liebscher CH, Glatzel U. Configuration of superdislocations in the γ′-Pt3Al phase of a Pt-based superalloy. Intermetallics. 2014;48:71.

    CAS  Google Scholar 

  17. Everaerts J, Papadaki C, Li W, Korsunsky AM. Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation. J Mech Phys Solids. 2019;131:303.

    CAS  Google Scholar 

  18. Xiong K, Lu H, Gu J. Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal. Comput Mater Sci. 2016;115:214.

    CAS  Google Scholar 

  19. Ma Z, Pei YL, Luo L, Qin L, Li SS, Gong SK. Partitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additions. Rare Met. 2020. https://doi.org/10.1007/s12598-019-01309-z.

    Article  Google Scholar 

  20. Yong S, Sugui T, Huichen Y, Delong S, Shuang L. Microstructure evolution and its effect on creep behavior of single crystal Ni-based superalloys with various orientations. Mater Sci Eng A. 2016;668:243.

    Google Scholar 

  21. Han GM, Yu JJ, Sun YL, Sun FX, Hu ZQ. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99. Mater Sci Eng A. 2010;527(21):5383.

    Google Scholar 

  22. Agudo Jácome L, Nörtershäuser P, Somsen C, Dlouhý A, Eggeler G. On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys. Acta Mater. 2014;69:246.

    Google Scholar 

  23. Pan Y, Wen M. Ab-initio calculations of mechanical and thermodynamic properties of TM (transition metal: 3d and 4d)-doped Pt3Al. Vacuum. 2018;156:419.

    CAS  Google Scholar 

  24. Sun YJ, Xiong K, Zhang SM, Mao Y. First-principles investigations on the elastic properties of platinum group metals (Pt, Pd, and Ru). Mater Sci Forum. 2019;944:761.

    Google Scholar 

  25. Thakur V, Pagare G. Theoretical calculations of elastic, mechanical and thermal properties of REPt3 (RE = Sc, Y and Lu) intermetallic compounds based on DFT. Indian J Phys. 2018;92(12):1503.

    CAS  Google Scholar 

  26. Boulechfar R, Khenioui Y, Drablia S, Meradji H, Abu-Jafar M, Omran SB, Khenata R, Ghemid S. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds. Solid State Commun. 2018;273:23.

    CAS  Google Scholar 

  27. Benamer A, Roumili A, Medkour Y, Charifi Z. First principle study of structural, elastic and electronic properties of APt3 (A = Mg, Sc, Y and Zr). Philos. Mag. 2018;98(5):408.

    CAS  Google Scholar 

  28. Li X, Chen X, Han L, Ruan C, Lu P, Guan P. First-principles study of the structural, elastic and electronic properties of Pt3M alloys. J Mater Res. 2016;31(19):2956.

    CAS  Google Scholar 

  29. Li Z, Xiong K, Sun Y, Jin C, Zhang S, He J, Mao Y. First-principles study of mechanical and thermodynamic properties of intermetallic Pt3M (M = Al, Hf, Zr Co, Y, Sc). Comput Condens Matter. 2020;23:e00462.

    Google Scholar 

  30. Oya-Seimiya Y, Shinoda T, Suzuki T. Low temperature strength anomaly of L12 type intermetallic compounds Co3Ti and Pt3Al. Mater Trans. 1996;37(9):1464.

    CAS  Google Scholar 

  31. Gornostyrev YN, Kontsevoi OY, Maksyutov A, Freeman AJ, Katsnelson M, Trefilov A, Lichtenshtein AI. Negative yield stress temperature anomaly and structural instability of Pt3Al. Phys Rev B. 2004;70(1):014102.

    Google Scholar 

  32. Liu Y, Huang H, Pan Y, Zhao G, Liang Z. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure. J Alloy Compd. 2014;597:200.

    CAS  Google Scholar 

  33. Li Z, Xiong K, Sun Y, Chen X, He J, Zhang S, Fu Y, Mao Y. First-principles investigations of structural, elastic, thermodynamic and electronic properties of Pt3Hf compound under pressure. IOP Conf Ser Mater Sci Eng. 2020;733:12030.

    CAS  Google Scholar 

  34. Popoola AI, Chown LH, Cornish LA. Theoretical investigations of Pt3X (X = Al, Sc, Hf, Zr) ground state. Turk J Phys. 2014;38(1):10.

    CAS  Google Scholar 

  35. Chen B, Qi S, Song H, Zhang C, Shen J. First-principle investigations on structural, elastic, electronic and thermodynamic properties of ScX3 (X = Ir, Pd, Pt and Rh) under high pressure. Mod Phys Lett B. 2015;29(32):1550201.

    CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    CAS  Google Scholar 

  37. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.

    Google Scholar 

  38. Pack JD, Monkhorst HJ. “Special points for Brillouin-zone integrations”—a reply. Phys Rev B. 1997;16(4):1748.

    Google Scholar 

  39. Le Page Y, Saxe P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B. 2002;65(10):104104.

    Google Scholar 

  40. Wu K, Jin Z. Thermodynamic assessment of the Al-Pt binary system. J Phase Equilib. 2000;21(3):221.

    CAS  Google Scholar 

  41. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruña HD. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater. 2013;12(1):81.

    CAS  Google Scholar 

  42. Pecora L, Ficalora PJ. Some bulk and thin film properties of ZrPt3 and HfPt3. J Electron Mater. 1997;6(5):531.

    Google Scholar 

  43. Dwight A, Downey J, Conner RA. Some AB3 compounds of the transitiom metals. Acta Crystallogr. 1961;14(1):75.

    CAS  Google Scholar 

  44. Zhao Y, Yu J, Wu L, Wan B, Zhang Y, Gao R, Zhang J, Gou H. Mechanical properties and electronic structures of diverse PtAl intermetallics: first-principles calculations. Comput Mater Sci. 2016;124:273.

    CAS  Google Scholar 

  45. Wang J, Yip S, Phillpot S, Wolf D. Crystal instabilities at finite strain. Phys Rev Lett. 1993;71(25):4182.

    CAS  Google Scholar 

  46. Voigt W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys.-Berlin. 1889;274(12):573.

    Google Scholar 

  47. Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z Angew Math Mech. 1929;9(1):49.

    CAS  Google Scholar 

  48. Hill R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 1952;65(5):349.

    Google Scholar 

  49. Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101(5):55504.

    Google Scholar 

  50. Gaillac R, Pullumbi P, Coudert FX. ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys.-Condes. Matter. 2016;28(27):275201.

    Google Scholar 

  51. Anderson OLJJP, Solids C. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 1963;24(7):909.

    CAS  Google Scholar 

  52. Chen Q, Huang Z, Zhao Z, Hu C. Thermal stabilities, elastic properties and electronic structures of B2-MgRE (RE = Sc, Y, La) by first-principles calculations. Comput Mater Sci. 2013;67:196.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51801179), Yunnan Science and Technology Projects (Nos. 2019ZE001-1, 2018ZE001, 2018ZE021 and 2018IC058) and Yunnan Applied Basic Research Projects (Nos. 2018FB083 and 2018FD011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Xiong or Yong Mao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZB., Xiong, K., Jin, CC. et al. Structural, mechanical, thermodynamic and electronic properties of Pt3M (M = Al, Co, Hf, Sc, Y, Zr) compounds under high pressure. Rare Met. 40, 1208–1218 (2021). https://doi.org/10.1007/s12598-020-01656-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01656-2

Keywords

Navigation