Skip to main content
Log in

Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Iron-based anodes for lithium-ion batteries (LIBs) with higher theoretical capacity, natural abundance and cheapness have received considerable attention, but they still suffer from the fast capacity fading. To address this issue, we report a facile synthesis of plate-like carbon-supported Fe3C nanoparticles through chemical blowing/carbonization under calcination. The ultrafine Fe3C nanoparticles are prone to be oxidized when exposing in air; thus, Fe3C/C with mild oxidization and the fully oxidized product of Fe2O3/C are successfully prepared by controlling the oxidization condition. When applied as an anode material in LIB, the Fe3C/C electrode demonstrates excellent cycle stability (826 mAh·g−1 after 120 cycles under 500 mA·g−1) and rate performance (410.6 mAh·g−1 under 2 A·g−1), compared with the Fe2O3/C counterpart. The enhanced electrochemical performance can be ascribed to the synergetic effect of the Fe3C with mild oxidation and the unique hierarchical structure of plate-like carbon decorated with Fe3C catalyst. More importantly, this work may offer new approaches to synthesize other transition metal (e.g., Co, Ni)-based anode material by replacing the precursor ingredient.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang J, Wang H, Li F, Xie S, Xu G, She Y, Leung MKH, Liu T. Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A. 2019;7(7):3024.

    CAS  Google Scholar 

  2. Wang H, Huang H, Niu C, Rogach AL. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries. Small. 2015;11(12):1364.

    CAS  Google Scholar 

  3. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.

    CAS  Google Scholar 

  4. Li Z, Li A, Zhang H, Lin R, Jin T, Cheng Q, Xiao X, Lee WK, Ge M, Zhang H, Zangiabadi A, Waluyo I, Hunt A, Zhai H, Borovilas JJ, Wang P, Yang XQ, Chuan X, Yang Y. Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy. 2020;72:104655.

    CAS  Google Scholar 

  5. Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.

    CAS  Google Scholar 

  6. Zhou X, Liu Q, Jiang C, Ji B, Ji X, Tang Y, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem Int Ed Engl. 2020;59(10):3802.

    CAS  Google Scholar 

  7. Zhu H, Zhang F, Li J, Tang Y. Penne-like MoS2/Carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small. 2018;14(13):1703951.

    Google Scholar 

  8. Zhao L, Wu H-H, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597.

    CAS  Google Scholar 

  9. Liu T, Yao T, Li L, Zhu L, Wang J, Li F, Wang H. Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries. J Colloid Interface Sci. 2020;580:21.

    CAS  Google Scholar 

  10. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok PH, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. Roadmap on carbon materials for energy storage and conversion. Chem-Asian J. 2020;15(7):995.

    CAS  Google Scholar 

  11. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    CAS  Google Scholar 

  12. An H, Jiang L, Li F, Wu P, Zhu X, Wei S, Zhou Y. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys-Chim Sin. 2020;36(7):1905034.

    Google Scholar 

  13. Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):9545.

    CAS  Google Scholar 

  14. Shi Q, Heng S, Qu Q, Gao T, Liu W, Hang L, Zheng H. Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. J Mater Chem A. 2017;5(22):10885.

    CAS  Google Scholar 

  15. Agubra VA, Fergus JW. The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sour. 2014;268:153.

    CAS  Google Scholar 

  16. Wang H, Wu Q, Cao D, Lu X, Wang J, Leung MKH, Cheng S, Lu L, Niu C. Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Mater Today Energy. 2016;1–2:24.

    Google Scholar 

  17. Wang J, Wang H, Cao D, Lu X, Han X, Niu C. epitaxial growth of urchin-like CoSe2 nanorods from electrospun Co-embedded porous carbon nanofibers and their superior lithium storage properties. Part Part Syst Charact. 2017;34(10):1700185.

    Google Scholar 

  18. Lu X, Wang P, Liu K, Niu C, Wang H. Encapsulating nanoparticulate Sb/MoOx into porous carbon nanofibers via electrospinning for efficient lithium storage. Chem Eng J. 2018;336:701.

    CAS  Google Scholar 

  19. Liu Y, Li X, Haridas AK, Sun Y, Heo J, Ahn JH, Lee Y. Biomass-derived graphitic carbon encapsulated Fe/Fe3C composite as an anode material for high-performance lithium ion batteries. Energies. 2020;13(4):827.

    CAS  Google Scholar 

  20. Li C, Sarapulova A, Pfeifer K, Dsoke S. Effect of continuous capacity rising performed by FeS/Fe3C/C composite electrodes for lithium-ion batteries. Chemsuschem. 2020;13(5):986.

    CAS  Google Scholar 

  21. Chen L, Li Z, Li G, Zhou M, He B, Ouyang J, Xu W, Wang W, Hou Z. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability. J Mater Sci Technol. 2020;44:229.

    Google Scholar 

  22. Zhang YJ, Qu J, Ji QY, Zhang TT, Chang W, Hao SM, Yu ZZ. Freestanding cellulose paper-derived carbon/Fe/Fe3C with enhanced electrochemical kinetics for high-performance lithium-sulfur batteries. Carbon. 2019;155:353.

    CAS  Google Scholar 

  23. Liu X, Li X, Sun Y, Zhang S, Wu Y. Onion-like carbon coated Fe3C nanocapsules embedded in porous carbon for the stable lithium-ion battery anode. Appl Surf Sci. 2019;479:318.

    CAS  Google Scholar 

  24. Su L, Zhou Z, Shen P. Core–shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries. Electrochim Acta. 2013;87:180.

    CAS  Google Scholar 

  25. Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P. N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J. 2014;258:93.

    CAS  Google Scholar 

  26. Zhao X, Xia D, Yue J, Liu S. In-situ generated nano-Fe3C embedded into nitrogen-doped carbon for high performance anode in lithium ion battery. Electrochim Acta. 2014;116:292.

    CAS  Google Scholar 

  27. Li J, Wen W, Xu G, Zou M, Huang Z, Guan L. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. Electrochim Acta. 2015;153:300.

    CAS  Google Scholar 

  28. Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano. 2015;9(3):3369.

    CAS  Google Scholar 

  29. Chen S, Wu J, Zhou R, Zuo L, Li P, Song Y, Wang L. Porous carbon spheres doped with Fe3C as an anode for high-rate lithium-ion batteries. Electrochim Acta. 2015;180:78.

    CAS  Google Scholar 

  30. Yang Y, Fan X, Casillas G, Peng Z, Ruan G, Wang G, Yacaman MJ, Tour JM. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano. 2014;8(4):3939.

    CAS  Google Scholar 

  31. Liu E, Wang J, Shi C, Zhao N, He C, Li J, Jiang JZ. Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. ACS Appl Mater Interfaces. 2014;6(20):18147.

    CAS  Google Scholar 

  32. Shin JY, Samuelis D, Maier J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater. 2011;21(18):3464.

    CAS  Google Scholar 

  33. Wang H, Yao T, Li C, Meng L, Cheng Y. Constructing three-dimensional ordered porous MoS2/C hierarchies for excellent high-rate long-life pseudocapacitive sodium storage. Chem Eng J. 2020;397:125385.

    CAS  Google Scholar 

  34. Patel P, Kim IS, Kumta PN. Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries. Mater Sci Eng B. 2005;116(3):347.

    Google Scholar 

  35. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;38(9):832.

    Google Scholar 

  36. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

    CAS  Google Scholar 

  37. Li H, Wang S, Feng M, Yang J, Zhang B. MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries. Chin Chem Lett. 2019;30(2):529.

    CAS  Google Scholar 

  38. Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8 /Graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664.

    Google Scholar 

  39. Gu ZY, Guo JZ, Sun ZH, Zhao XX, Li WH, Yang X, Liang HJ, Zhao CD, Wu XL. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020;65(9):702.

    CAS  Google Scholar 

  40. Liu DH, Li WH, Zheng YP, Cui Z, Yan X, Liu DS, Wang J, Zhang Y, Lu HY, Bai FY, Guo JZ, Wu XL. In situ encapsulating alpha-MnS into N, S-codoped nanotube-like carbon as advanced anode material: alpha –> beta phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv Mater. 2018;30(21):1706317.

    Google Scholar 

  41. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    CAS  Google Scholar 

  42. Xie Q, Zhang Y, Xie D, Zhao P. Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. J Electroanal Chem. 2020;857:113749.

    CAS  Google Scholar 

  43. Tan Q, Chen X, Wan H, Zhang B, Liu X, Li L, Wang C, Gan Y, Liang P, Wang Y, Zhang J, Wang H, Miao L, Jiang J, van Aken PA, Wang H. Metal–organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J Power Sour. 2020;448:227403.

    CAS  Google Scholar 

  44. Ao X, Zhang W, Li Z, Li JG, Soule L, Huang X, Chiang WH, Chen HM, Wang C, Liu M, Zeng XC. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano. 2019;13(10):11853.

    CAS  Google Scholar 

  45. Yang X, Tang YB, Huang X, Xue HT, Kang WP, Li WY, Ng TW, Lee CS. Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J Power Sour. 2015;284:109.

    CAS  Google Scholar 

  46. Zhou P, Sheng JZ, Gao CW, Dong J, An QY, Mai LQ. Synthesis of V2O5/Fe2V4O13 nanocomposite materials using in situ phase separation and the electrochemical performance for sodium storage. Acta Phys-Chim Sin. 2020;36(5):1906046.

    Google Scholar 

  47. Xiao F, Li W, Fang L, Wang D. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. J Hazard Mater. 2016;308:11.

    CAS  Google Scholar 

  48. Xiao F, Yang X, Wang H, Xu J, Liu Y, Yu DYW, Rogach AL. Covalent encapsulation of sulfur in a MOF—derived S, N-doped porous carbon host realized via the vapor—infiltration method results in enhanced sodium-sulfur battery performance. Adv Energy Mater. 2020. https://doi.org/10.1002/aenm.202000931.

    Article  Google Scholar 

  49. Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang MS, Peng DL, Zhang Q. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126.

    Google Scholar 

  50. Zhao Y, Feng Z, Xu ZJ. Yolk-shell Fe2O3 middle dot in circle C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale. 2015;7(21):9520.

    CAS  Google Scholar 

  51. Zhang J, Qi L, Zhu X, Yan X, Jia Y, Xu L, Sun D, Tang Y. Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes. Nano Res. 2017;10(9):3164.

    CAS  Google Scholar 

  52. Huang YG, Lin XL, Zhang XH, Pan QC, Yan ZX, Wang HQ, Chen JJ, Li QY. Fe3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries. Electrochim Acta. 2015;178:468.

    CAS  Google Scholar 

  53. Guo B, Sun XG, Veith GM, Bi Z, Mahurin SM, Liao C, Bridges C, Paranthaman MP, Dai S. Nitrogen-enriched carbons from alkali salts with high coulombic efficiency for energy storage applications. Adv Energy Mater. 2013;3(6):708.

    CAS  Google Scholar 

  54. Zou M, Wang L, Li J, Guan L, Huang Z. Enhanced Li-ion battery performances of yolk-shell Fe3O4@C anodes with Fe3C catalyst. Electrochim Acta. 2017;233:85.

    CAS  Google Scholar 

  55. Wang H, Wang J, Xie S, Liu W, Niu C. Template synthesis of graphitic hollow carbon nanoballs as supports for SnOx nanoparticles towards enhanced lithium storage performance. Nanoscale. 2018;10(13):6159.

    CAS  Google Scholar 

  56. Dong Y, Hu M, Zhang Z, Zapien JA, Wang X, Lee JM, Zhang W. Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Appl Nano Mater. 2019;2(3):1457.

    CAS  Google Scholar 

  57. Wang J, Zhu L, Li F, Yao T, Liu T, Cheng Y, Yin Z, Wang H. Synergizing phase and cavity in CoMoOxSy yolk-shell anodes to co-enhance capacity and rate capability in sodium storage. Small. 2020. https://doi.org/10.1002/smll.202002487.

    Article  Google Scholar 

  58. Hou L, Yang W, Xu X, Deng B, Chen Z, Wang S, Tian J, Yang F, Li Y. In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chem Eng J. 2019;375:122061.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by State Grid Corporation of China (No. 5202011600TY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Hao Yao or Hong-Kang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1876 kb)

Supplementary material 2 (MP4 4855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Qian, S., Yao, TH. et al. Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance. Rare Met. 40, 1402–1411 (2021). https://doi.org/10.1007/s12598-020-01653-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01653-5

Keywords

Navigation