Skip to main content

Advertisement

Log in

Engineering capacitive contribution in dual carbon-confined Fe3O4 nanoparticle enabling superior Li+ storage capability

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Iron oxides have attracted widespread attention as lithium-ion batteries anode in virtue of abundant resources, high theoretical capacity, and environmental friendliness. However, during the process of charging and discharging, the poor conductivity and large volume expansion of iron oxides lead to the pulverization of the material as well as the rapid capacity fading, which limits further application significantly. Hence, tiny Fe3O4 nanoparticles encapsulated into double layers N-doped hollow carbon nanotubes (NHCNT/Fe3O4) are synthesized by a controllable chemical bath deposition and subsequent carbonization treatment. Benefitting from the double carbon buffer layers and the outstanding N-doped carbon conductive network, the well-designed NHCNT/Fe3O4 electrode delivers an excellent cycling stability with 87% capacity retention at 1 A g−1 after 1000 cycles and a remarkable rate performance. And hollow N-doped carbon nanotubes (NHCNT) displays a favorable reversible capacity of 350 mAh g−1 in the 500th cycle at 1 A g−1. The in-depth kinetic analysis reveals the dominated capacitive contribution facilitate to realize a superior rate capability of NHCNT/Fe3O4 anode. The excellent electrochemical performance exhibited by the NHCNT/Fe3O4 composites material provides great innovative ideas and inspiration for the design of the next-generation lithium-ion battery anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Li M, Lu J, Chen Z, Amine K (2018) 30 Years of lithium-ion batteries. Adv Mater 30(33):1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928. https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262. https://doi.org/10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  4. Huang Y, Xu Z, Mai J, Lau T-K, Lu X, Hsu Y-J, Chen Y, Lee AC, Hou Y, Meng YS, Li Q (2017) Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. Nano Energy 41:426–433. https://doi.org/10.1016/j.nanoen.2017.10.001

    Article  CAS  Google Scholar 

  5. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30(17):1705702. https://doi.org/10.1002/adma.201705702

    Article  CAS  Google Scholar 

  6. Zhang K, Xiong F, Zhou J, Mai L, Zhang L (2020) Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy 67:104222. https://doi.org/10.1016/j.nanoen.2019.104222

    Article  CAS  Google Scholar 

  7. Seok JY, Lee J, Park JH, Yang M (2019) Ultrafine copper nanopalm tree-like framework decorated with iron oxide for Li-Ion battery anodes with exceptional rate capability and cycling stability. Adv Energy Mater 9(13):1803764. https://doi.org/10.1002/aenm.201803764

    Article  CAS  Google Scholar 

  8. Liu H, Wang G, Liu J, Qiao S, Ahn H (2011) Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J Mater Chem 21(9):3046–3052. https://doi.org/10.1039/C0JM03132A

    Article  CAS  Google Scholar 

  9. Zou Y, Wang Y (2011) NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3(6):2615–2620. https://doi.org/10.1039/C1NR10070J

    Article  CAS  Google Scholar 

  10. Zhang G, Chen Y, Qu B, Hu L, Mei L, Lei D, Li Q, Chen L, Li Q, Wang T (2012) Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim Acta 80:140–147. https://doi.org/10.1016/j.electacta.2012.06.107

    Article  CAS  Google Scholar 

  11. Zhao Y, Wang F, Wang C, Wang S, Wang C, Zhao Z, Duan L, Liu Y, Wu Y, Li W, Zhao D (2019) Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy 56:426–433. https://doi.org/10.1016/j.nanoen.2018.11.040

    Article  CAS  Google Scholar 

  12. Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong C-P, Kang F, Lin Z, Li B (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305. https://doi.org/10.1016/j.carbon.2018.09.010

    Article  CAS  Google Scholar 

  13. Lv X, Deng J, Wang B, Zhong J, Sham T-K, Sun X, Sun X (2017) γ-Fe2O3@CNTs Anode materials for lithium ion batteries investigated by electron energy loss spectroscopy. Chem Mater 29(8):3499–3506. https://doi.org/10.1021/acs.chemmater.6b05356

    Article  CAS  Google Scholar 

  14. Sun B, Lou S, Qian Z, Zuo P, Du C, Ma Y, Huo H, Xie J, Wang J, Yin G (2019) Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy 66:104179. https://doi.org/10.1016/j.nanoen.2019.104179

    Article  CAS  Google Scholar 

  15. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194. https://doi.org/10.1021/nn100740x

    Article  CAS  Google Scholar 

  16. Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405. https://doi.org/10.1002/adma.201405222

    Article  CAS  Google Scholar 

  17. Wang L, Zhang G, Liu Q, Duan H (2018) Recent progress in Zn-based anodes for advanced lithium ion batteries. Mater Chem Front 2(8):1414–1435. https://doi.org/10.1039/c8qm00125a

    Article  CAS  Google Scholar 

  18. Li L, Kovalchuk A, Fei H, Peng Z, Li Y, Kim ND, Xiang C, Yang Y, Ruan G, Tour JM (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5(14):1500171. https://doi.org/10.1002/aenm.201500171

    Article  CAS  Google Scholar 

  19. Jia X, Chen Z, Cui X, Peng Y, Wang X, Wang G, Wei F, Lu Y (2012) Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 6(11):9911–9919. https://doi.org/10.1021/nn303478e

    Article  CAS  Google Scholar 

  20. Nie Y, Zhang H, Zhang J, Wang L, Zhong S, Wu Y, Duan J, Shi H, Victor KK, Zhang G, Duan H (2019) Phosphorization-induced void-containing Fe3O4 nanoparticles enabling low lithiation/delithiation potential for high-performance lithium-ion batteries. ChemElectroChem 6(19):5060–5069. https://doi.org/10.1002/celc.201901340

    Article  CAS  Google Scholar 

  21. Xiao Z, Xia Y, Ren Z, Liu Z, Xu G, Chao C, Li X, Shen G, Han G (2012) Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J Mater Chem 22(38):20566–20573. https://doi.org/10.1039/C2JM34083F

    Article  CAS  Google Scholar 

  22. Muraliganth T, Vadivel Murugan A, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 47:7360–7362. https://doi.org/10.1039/B916376J

    Article  Google Scholar 

  23. Geng H, Zhou Q, Pan Y, Gu H, Zheng J (2014) Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries. Nanoscale 6(7):3889–3894. https://doi.org/10.1039/C3NR06409C

    Article  CAS  Google Scholar 

  24. Liu J, Xu X, Hu R, Yang L, Zhu M (2016) Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes. Adv Energy Mater 6(13):1600256. https://doi.org/10.1002/aenm.201600256

    Article  CAS  Google Scholar 

  25. Wang X, Lv L, Cheng Z, Gao J, Dong L, Hu C, Qu L (2016) High-density monolith of N-doped Holey graphene for ultrahigh volumetric capacity of Li-Ion batteries. Adv Energy Mater 6(6):1502100. https://doi.org/10.1002/aenm.201502100

    Article  CAS  Google Scholar 

  26. Yue J, Wang W, Wang N, Yang X, Feng J, Yang J, Qian Y (2015) Triple-walled SnO2@N-doped carbon@SnO2 nanotubes as an advanced anode material for lithium and sodium storage. J Mater Chem A 3(46):23194–23200. https://doi.org/10.1039/C5TA06080J

    Article  CAS  Google Scholar 

  27. Zhang C, Wei D, Wang F, Zhang G, Duan J, Han F, Duan H, Liu J (2021) Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J Energy Chem 53:26–35. https://doi.org/10.1016/j.jechem.2020.05.011

    Article  Google Scholar 

  28. Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L (2017) General oriented formation of carbon nanotubes from metal-organic frameworks. J Am Chem Soc 139(24):8212–8221. https://doi.org/10.1021/jacs.7b01942

    Article  CAS  Google Scholar 

  29. Zhong S, Zhang H, Fu J, Shi H, Wang L, Zeng W, Liu Q, Zhang G, Duan H (2018) In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries. ChemElectroChem 5(13):1708–1716. https://doi.org/10.1002/celc.201800287

    Article  CAS  Google Scholar 

  30. Zhang L, Xia G, Guo Z, Li X, Sun D, Yu X (2016) Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. Int J Hydrog Energy 41(32):14252–14260. https://doi.org/10.1016/j.ijhydene.2016.06.016

    Article  CAS  Google Scholar 

  31. Li H, Wang J, Li Y, Zhao Y, Tian Y, Kurmanbayeva I, Bakenov Z (2019) Hierarchical sandwiched Fe3O4@C/Graphene composite as anode material for lithium-ion batteries. J Electroanal Chem 847:113240. https://doi.org/10.1016/j.jelechem.2019.113240

    Article  CAS  Google Scholar 

  32. Zhang G, Zhu J, Zeng W, Hou S, Gong F, Li F, Li CC, Duan H (2014) Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9:61–70. https://doi.org/10.1016/j.nanoen.2014.06.030

    Article  CAS  Google Scholar 

  33. Liu Y, Wu N, Wang Z, Cao H, Liu J (2017) Fe3O4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability. New J Chem 41(14):6241–6250. https://doi.org/10.1039/c7nj00230k

    Article  CAS  Google Scholar 

  34. Qi W, Li X, Li H, Wu W, Li P, Wu Y, Kuang C, Zhou S, Li X (2017) Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes. Nano Research 10(9):2923–2933. https://doi.org/10.1007/s12274-017-1502-x

    Article  CAS  Google Scholar 

  35. Wang Y, Chen L, Liu H, Xiong Z, Zhao L, Liu S, Huang C, Zhao Y (2019) Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chem Eng J 356:746–755. https://doi.org/10.1016/j.cej.2018.09.015

    Article  Google Scholar 

  36. Huang J, Cheng S, Chen Y, Chen Z, Luo H, Xia X, Liu H (2019) High-rate capability and long-term cycling of self-assembled hierarchical Fe3O4/carbon hollow spheres through interfacial control. J Mater Chem A 7(28):16720–16727. https://doi.org/10.1039/c9ta04041b

    Article  CAS  Google Scholar 

  37. Yan Z, Jiang X, Dai Y, Xiao W, Li X, Du N, He G (2018) Pulverization control by confining Fe3O4 nanoparticles individually into macropores of hollow carbon spheres for high-performance Li-Ion batteries. ACS Appl Mater Interfaces 10(3):2581–2590. https://doi.org/10.1021/acsami.7b16530

    Article  CAS  Google Scholar 

  38. Deng W, Ci S, Li H, Wen Z (2017) One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries. Chem Eng J 330:995–1001. https://doi.org/10.1016/j.cej.2017.08.039

    Article  CAS  Google Scholar 

  39. Chen Q, Zhong W, Zhang J, Gao C, Liu W, Li G, Ren M (2019) Fe3O4 nanorods in N-doped carbon matrix with pseudo-capacitive behaviors as an excellent anode for subzero lithium-ion batteries. J Alloy Compd 772:557–564. https://doi.org/10.1016/j.jallcom.2018.09.157

    Article  CAS  Google Scholar 

  40. Mao J, Niu D, Zheng N, Jiang G, Zhao W, Shi J, Li Y (2019) Fe3O4-Embedded and N-doped hierarchically porous carbon nanospheres as high-performance lithium ion battery anodes. ACS Sustain Chem Eng 7(3):3424–3433. https://doi.org/10.1021/acssuschemeng.8b05651

    Article  CAS  Google Scholar 

  41. Tang Z, Zhang G, Zhang H, Wang L, Shi H, Wei D, Duan H (2018) MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater 10:75–84. https://doi.org/10.1016/j.ensm.2017.08.009

    Article  Google Scholar 

  42. Zhong S, Liu H, Wei D, Hu J, Zhang H, Hou H, Peng M, Zhang G, Duan H (2020) Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem Eng J 395:125054. https://doi.org/10.1016/j.cej.2020.125054

    Article  CAS  Google Scholar 

  43. Hao S-M, Li Q-J, Qu J, An F, Zhang Y-J, Yu Z-Z (2018) Neuron-inspired Fe3O4/conductive carbon filament network for high-speed and stable lithium storage. ACS Appl Mater Interfaces 10(21):17923–17932. https://doi.org/10.1021/acsami.8b03174

    Article  CAS  Google Scholar 

  44. Qin X, Zhang H, Wu J, Chu X, He Y-B, Han C, Miao C, Wang S, Li B, Kang F (2015) Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 87:347–356. https://doi.org/10.1016/j.carbon.2015.02.044

    Article  CAS  Google Scholar 

  45. He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-Encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5):4459–4469. https://doi.org/10.1021/nn401059h

    Article  CAS  Google Scholar 

  46. Zou M, Wang L, Li J, Guan L, Huang Z (2017) Enhanced Li-ion battery performances of yolk-shell Fe3O4@C anodes with Fe3C catalyst. Electrochim Acta 233:85–91. https://doi.org/10.1016/j.electacta.2017.02.079

    Article  CAS  Google Scholar 

  47. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313. https://doi.org/10.1021/cm101532x

    Article  CAS  Google Scholar 

  48. Jin S, Deng H, Long D, Liu X, Zhan L, Liang X, Qiao W, Ling L (2011) Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J Power Sour 196(8):3887–3893. https://doi.org/10.1016/j.jpowsour.2010.12.078

    Article  CAS  Google Scholar 

  49. Jiang X, Yang X, Zhu Y, Yao Y, Zhao P, Li C (2015) Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3(5):2361–2369. https://doi.org/10.1039/C4TA05913A

    Article  CAS  Google Scholar 

  50. Chen M, Shen X, Chen K, Wu Q, Zhang P, Zhang X, Diao G (2016) Nitrogen-doped mesoporous carbon-encapsulation urchin-like Fe3O4 as anode materials for high performance Li-ions batteries. Electrochim Acta 195:94–105. https://doi.org/10.1016/j.electacta.2016.02.128

    Article  CAS  Google Scholar 

  51. Jiang J, Zhang Y, Li Z, An Y, Zhu Q, Xu Y, Zang S, Dou H, Zhang X (2020) Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. J Colloid Interface Sci 567:75–83. https://doi.org/10.1016/j.jcis.2020.01.120

    Article  CAS  Google Scholar 

  52. Jiang Z, Li Y, Han C, He Z, Ma W, Meng W, Jiang Y, Dai L, Wang L (2020) Superior lithium storage performance of hierarchical N-doped carbon encapsulated NaTi2(PO4)3 microflower. Ceram Int 46(2):1954–1961. https://doi.org/10.1016/j.ceramint.2019.09.174

    Article  CAS  Google Scholar 

  53. Lee WSV, Huang X, Tan TL, Xue JM (2018) Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor. ACS Appl Mater Interfaces 10(2):1690–1700. https://doi.org/10.1021/acsami.7b15473

    Article  CAS  Google Scholar 

  54. Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li Storage and Impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-Ion batteries. ACS Appl Mater Interfaces 6(1):680–690. https://doi.org/10.1021/am4047552

    Article  CAS  Google Scholar 

  55. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D Graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25(21):2909–2914. https://doi.org/10.1002/adma.201300445

    Article  CAS  Google Scholar 

  56. Wang Z, Liu C-J (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293. https://doi.org/10.1016/j.nanoen.2014.10.022

    Article  CAS  Google Scholar 

  57. Liu S, Dong Y, Zhao C, Zhao Z, Yu C, Wang Z, Qiu J (2015) Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy 12:578–587. https://doi.org/10.1016/j.nanoen.2015.01.016

    Article  CAS  Google Scholar 

  58. Wood KN, O’Hayre R, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7(4):1212–1249. https://doi.org/10.1039/C3EE44078H

    Article  CAS  Google Scholar 

  59. Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25(15):2152–2157. https://doi.org/10.1002/adma.201300071

    Article  CAS  Google Scholar 

  60. Qin J, He C, Zhao N, Wang Z, Shi C, Liu E-Z, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8(2):1728–1738. https://doi.org/10.1021/nn406105n

    Article  CAS  Google Scholar 

  61. Mahmood N, Zhang C, Liu F, Zhu J, Hou Y (2013) Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7(11):10307–10318. https://doi.org/10.1021/nn4047138

    Article  CAS  Google Scholar 

  62. Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136–6143. https://doi.org/10.1021/nl403461n

    Article  CAS  Google Scholar 

  63. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5(7):567–573. https://doi.org/10.1038/nmat1672

    Article  CAS  Google Scholar 

  64. Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham T-K, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6(10):2900–2906. https://doi.org/10.1039/C3EE40829A

    Article  CAS  Google Scholar 

  65. Hu M, Jiang Y, Yan M (2014) Scalable synthesis of Fe3O4/C composites with enhanced electrochemical performance as anode materials for lithium-ion batteries. J Alloy Compd 582:563–568. https://doi.org/10.1016/j.jallcom.2013.08.098

    Article  CAS  Google Scholar 

  66. Hao Q, Ye J, Xu C (2017) Facile fabrication of Fe3O4 octahedra with bimodal conductive network of nanoporous Cu and graphene nanosheets for high-performance anode in Li-ion batteries. J Alloy Compd 727:34–42. https://doi.org/10.1016/j.jallcom.2017.08.139

    Article  CAS  Google Scholar 

  67. Wang P, Gao M, Pan H, Zhang J, Liang C, Wang J, Zhou P, Liu Y (2013) A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. J Power Sour 239:466–474. https://doi.org/10.1016/j.jpowsour.2013.03.073

    Article  CAS  Google Scholar 

  68. Xin Q, Gai L, Wang Y, Ma W, Jiang H, Tian Y (2017) Hierarchically structured Fe3O4/C nanosheets for effective lithium-ion storage. J Alloy Compd 691:592–599. https://doi.org/10.1016/j.jallcom.2016.08.331

    Article  CAS  Google Scholar 

  69. Xu L, Jiao R, Tao X, Yi X, Wei D (2020) One-step thermal decomposition of C4H4FeO6 to Fe3O4@carbon nano-composite for high-performance lithium-ion batteries. Mater Chem Phys 239:122024. https://doi.org/10.1016/j.matchemphys.2019.122024

    Article  CAS  Google Scholar 

  70. Li X, Huang X, Liu D, Wang X, Song S, Zhou L, Zhang H (2011) Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115(44):21567–21573. https://doi.org/10.1021/jp204502n

    Article  CAS  Google Scholar 

  71. Jing L, Fu A, Li H, Liu J, Guo P, Wang Y, Zhao XS (2014) One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Adv 4(104):59981–59989. https://doi.org/10.1039/C4RA09079A

    Article  CAS  Google Scholar 

  72. Xie W, Gu L, Sun X, Liu M, Li S, Wang Q, Liu D, He D (2016) Ferrocene derived core-shell structural Fe3O4@C nanospheres for superior lithium storage properties. Electrochim Acta 220:107–113. https://doi.org/10.1016/j.electacta.2016.09.149

    Article  CAS  Google Scholar 

  73. Du J, Ding Y, Guo L, Wang L, Fu Z, Qin C, Wang F, Tao X (2017) Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries. Appl Surf Sci 425:164–169. https://doi.org/10.1016/j.apsusc.2017.06.213

    Article  CAS  Google Scholar 

  74. Wang Y, Zhang L, Gao X, Mao L, Hu Y, Lou XW (2014) One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. Small 10(14):2815–2819. https://doi.org/10.1002/smll.201400239

    Article  CAS  Google Scholar 

  75. Wang J-Z, Zhong C, Wexler D, Idris NH, Wang Z-X, Chen LQ, Liu H-K (2011) Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem – Eur J 17(2):661–667. https://doi.org/10.1002/chem.201001348

    Article  CAS  Google Scholar 

  76. Lim H-S, Jung B-Y, Sun Y-K, Suh K-D (2012) Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries. Electrochim Acta 75:123–130. https://doi.org/10.1016/j.electacta.2012.04.082

    Article  CAS  Google Scholar 

  77. Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12(6):518–522. https://doi.org/10.1038/nmat3601

    Article  CAS  Google Scholar 

  78. Rauda IE, Augustyn V, Saldarriaga-Lopez LC, Chen X, Schelhas LT, Rubloff GW, Dunn B, Tolbert SH (2014) Nanostructured pseudocapacitors based on atomic layer deposition of V2O5 onto conductive nanocrystal-based mesoporous ITO scaffolds. Adv Func Mater 24(42):6717–6728. https://doi.org/10.1002/adfm.201401284

    Article  CAS  Google Scholar 

  79. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614. https://doi.org/10.1039/C3EE44164D

    Article  CAS  Google Scholar 

  80. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J Phys Chem C 111(40):14925–14931. https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  81. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210. https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51702095), Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3041) and the Fundamental Research Funds for the Central Universities (531118010016). We acknowledge Siyu Zhong from Karlsruher Institut für Technologie for the discussion of electrochemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanhua Zhang or Donghai Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, X., Liu, H. et al. Engineering capacitive contribution in dual carbon-confined Fe3O4 nanoparticle enabling superior Li+ storage capability. J Mater Sci 56, 5100–5112 (2021). https://doi.org/10.1007/s10853-020-05554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05554-x

Navigation