Skip to main content
Log in

Micro-structured lepidocrocite-type H1.07Ti1.73O4 as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The lepidocrocite-type H1.07Ti1.73O4 microsized structures with a tap density of 0.88 g·cm−3 were prepared through the ion exchange method with K0.8Li0.27Ti1.73O4 powder as the precursor, and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries (LIB). The ion exchange method provides favorable conditions for H1.07Ti1.73O4 as an anode electrode material for LIBs. X-ray photoelectron spectroscopy (XPS) result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4, which have a beneficial effect on the LIB performance. The electrochemical performance test proves that the half-cell with microsized H1.07Ti1.73O4 as the anode electrode can maintain a specific capacity of 129.5 mAh·g−1 after 1100 cycles and 101 mAh·g−1 after 3000 long cycles at high current densities of 2.0 and 5.0 A·g−1, respectively. In addition, the small volume change rate of 3.6% in H1.07Ti1.73O4 during Li ion insertion was confirmed by real-time in situ transmission electron microscopy (TEM). The LiFePO4||H1.07Ti1.73O4 full battery exhibits a long-term cycling stability with a specific capacity of 73.8 mAh·g−1 at a current density of 500 mA·g−1 after 200 cycles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    CAS  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit. 2008;47(16):2930.

    CAS  Google Scholar 

  3. Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.

    Google Scholar 

  4. Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J. 2019;356:641.

    CAS  Google Scholar 

  5. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  6. Yi J, Li X, Hu S, Li W, Zeng R, Fu Z, Chen L. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Met. 2011;30(6):589.

    CAS  Google Scholar 

  7. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    CAS  Google Scholar 

  8. An HF, Jiang L, Li F, Wu P, Zhu XS, Wei SH, Zhou YM. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys Chim Sin. 2020;36(7):7.

    Google Scholar 

  9. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.

    CAS  Google Scholar 

  10. Ma C, Xu T, Wang Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020;25:811.

    Google Scholar 

  11. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    CAS  Google Scholar 

  12. Xie J, Cao GS, Zhao XB. CoSb3-graphite composite anode material for lithium ion batteries. Rare Met. 2005;24(1):42.

    CAS  Google Scholar 

  13. Yi TF, Wei TT, Li Y, He YB, Wang ZB. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater. 2020;26:165.

    Google Scholar 

  14. Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01462-w.

    Article  Google Scholar 

  15. Zhu GN, Wang YG, Xia YY. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci. 2012;5(5):6652.

    CAS  Google Scholar 

  16. Guo J, Liu J. Topotactic conversion-derived Li4Ti5O12-rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014;4(25):12950.

    CAS  Google Scholar 

  17. Guo J, Zuo W, Cai Y, Chen S, Zhang S, Liu J. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. J Mater Chem A. 2015;3(9):4938.

    CAS  Google Scholar 

  18. Shi XY, Yu SS, Deng T, Zhang W, Zheng WT. Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: dual-ion architecture superior to lithium-ion storage. J Energy Chem. 2020;44:13.

    Google Scholar 

  19. Yao NY, Liu HK, Liang X, Sun Y, Feng XY, Chen CH, Xiang HF. Li4Ti5O12 nanosheets embedded in three-dimensional amorphous carbon for superior-rate battery applications. J Alloy Compd. 2019;771:755.

    CAS  Google Scholar 

  20. Liu Y, Zhao M, Xu H, Chen J. Fabrication of continuous conductive network for Li4Ti5O12 anode by Cu-doping and graphene wrapping to boost lithium storage. J Alloy Compd. 2019;780:1.

    CAS  Google Scholar 

  21. Zhang CC, Wu LP, Li XJ, Zhang LZ. Nanocubic Li4Ti5O12 derived from H-titanate nanotubes as anode material for lithium-ion batteries. J Electron Mater. 2020;49(6):3883.

    CAS  Google Scholar 

  22. Guo Q, Chen L, Shan ZZ, Lee WSV, Xiao W, Liu ZF, Liang JJ, Yang GL, Xue JM. High lithium insertion voltage single-crystal H2Ti12O25 nanorods as a high-capacity and high-rate lithium-ion battery anode material. Chemsuschem. 2018;11(1):299.

    CAS  Google Scholar 

  23. Nagai H, Kataoka K, Akimoto J. Synthesis of H2Ti12O25 containing fine carbon particles by impregnation method using porous titanium hydroxide. J Ceram Soc JPN. 2019;127(6):399.

    CAS  Google Scholar 

  24. Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev. 2019;48(11):3015.

    CAS  Google Scholar 

  25. Liao JY, Xiao XC, Higgins D, Lui G, Chen ZW. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS Appl Mater Interfaces. 2014;6(1):568.

    CAS  Google Scholar 

  26. Wang CM, Chen L, Su YL, Yang GL, Zhang WL. The preparation of H2Ti12O25 via multi-method and their rate performance in lithium ions battery. Electrochim Acta. 2016;213:375.

    CAS  Google Scholar 

  27. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556.

    CAS  Google Scholar 

  28. Yan H, Yao W, Fan R, Zhang Y, Luo J, Xu J. Mesoporous hierarchical structure of Li4Ti5O12/graphene with high electrochemical performance in lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(9):11360.

    CAS  Google Scholar 

  29. Reeves KG, Ma J, Fukunishi M, Salanne M, Komaba S, Dambournet D. Insights into Li+, Na+ and K+ intercalation in lepidocrocite-type layered TiO2 structures. ACS Appl Energy Mater. 2018;1(5):2078.

    CAS  Google Scholar 

  30. Yuan H, Lubbers R, Besselink R, Nijland M, ten Elshof JE. Improved Langmuir-Blodgett titanate films via in situ exfoliation study and optimization of deposition parameters. ACS Appl Mater Interfaces. 2014;6(11):8567.

    CAS  Google Scholar 

  31. Xu J, Tang H, Xu T, Wu D, Shi Z, Tian Y, Li X. Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries. Ionics. 2017;23(12):3273.

    CAS  Google Scholar 

  32. Wang Y, Lim YV, Huang S, Ding M, Kong D, Pei Y, Xu T, Shi Y, Li X, Yang HY. Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale. 2020;12(7):4341.

    CAS  Google Scholar 

  33. Jiang ZM, Xu TT, Yan CC, Ma CY, Dai SG. Urchin-like Ni2/3Co1/3(CO3)1/2(OH)·0.11H2O for high-performance supercapacitors. Front Chem. 2018;6:431.

    CAS  Google Scholar 

  34. Yan J, Zhi G, Kong D, Wang H, Xu T, Zang J, Shen W, Xu J, Shi Y, Dai S, Li X, Wang Y. 3D Printed rGO/CNT microlattice aerogel for dendrite-free Na metal anode. J Mater Chem A. 2020. https://doi.org/10.1039/D0TA05817C.

    Article  Google Scholar 

  35. Kong D, Wang Y, Huang S, Zhang B, Lim YV, Sim GJ, Valdivia Y, Alvarado P, Ge Q, Yang HY. 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano. 2020;14(8):9675.

    CAS  Google Scholar 

  36. Jiang Z, Xu T, Dai S, Yan C, Ma C, Wang X, Xu J, Zhang S, Wang Y. 3D mesoporous Ni(OH)2/WS2 nanofibers with highly enhanced performances for hybrid supercapacitors. Energy Technol. 2019;7(3):1800476.

    Google Scholar 

  37. Yan C, Xu T, Ma C, Zang J, Xu J, Shi Y, Kong D, Ke C, Li X, Wang Y. Dendrite-free Li metal plating/stripping onto three-dimensional vertical-graphene@carbon-cloth host. Front Chem. 2019;7:714.

    CAS  Google Scholar 

  38. Wang L, Yan J, Xu Z, Wang W, Wen J, Bai X. Rate mechanism of vanadium oxide coated tin dioxide nanowire electrode for lithium ion battery. Nano Energy. 2017;42:294.

    CAS  Google Scholar 

  39. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.

    CAS  Google Scholar 

  40. Tanaka T, Ebina Y, Takada K, Kurashima K, Sasaki T. Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem Mater. 2003;15(18):3564.

    CAS  Google Scholar 

  41. Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater. 2016;6(21):1601057.

    Google Scholar 

  42. Wang Y, Kong D, Huang S, Shi Y, Ding M, Lim YV, Xu T, Chen F, Li X, Yang HY. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J Mater Chem A. 2018;6(23):10813.

    CAS  Google Scholar 

  43. Wang Y, Chen B, Seo DH, Han ZJ, Wong JI, Ostrikov K, Zhang H, Yang HY. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 2016;8:e268.

    CAS  Google Scholar 

  44. Song Y, Wang H, Xiong J, Guo B, Liang S, Wu L. Photocatalytic hydrogen evolution over monolayer H1.07Ti1.73O4 center dot H2O nanosheets: roles of metal defects and greatly enhanced performances. Appl Catal B-Environ. 2018;221:473.

    CAS  Google Scholar 

  45. Shirpour M, Cabana J, Doeff M. Lepidocrocite-type layered titanate structures: new lithium and sodium ion intercalation anode materials. Chem Mater. 2014;26(8):2502.

    CAS  Google Scholar 

  46. Kong D, Wang Y, Von Lim Y, Huang S, Zhang J, Liu B, Chen T, Yang HY. 3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy. 2018;49:460.

    CAS  Google Scholar 

  47. Markus IM, Engelke S, Shirpour M, Asta M, Doeff M. Experimental and computational investigation of lepidocrocite anodes for sodium-ion batteries. Chem Mater. 2016;28(12):4284.

    CAS  Google Scholar 

  48. Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580.

    CAS  Google Scholar 

  49. Ou X, Yang C, Xiong X, Zheng F, Pan Q, Jin C, Liu M, Huang K. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater. 2017;27(13):1606242.

    Google Scholar 

  50. Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020. https://doi.org/10.1021/acsnano.9b08575.

    Article  Google Scholar 

  51. Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K. Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy. 2015;13:77.

    Google Scholar 

  52. Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun. 2014;5:4526.

    CAS  Google Scholar 

  53. Odziomek M, Chaput F, Rutkowska A, Swierczek K, Olszewska D, Sitarz M, Lerouge F, Parola S. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun. 2017;8:1.

    Google Scholar 

  54. Yang J, Gao H, Men S, Shi Z, Lin Z, Kang X, Chen S. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci. 2018;5(12):1800763.

    Google Scholar 

  55. Xu T, Chen Q, Zhang C, Ran K, Wang J, Rosentsveig R, Tenne R. Self-healing of bended WS2 nanotubes and its effect on the nanotube’s properties. Nanoscale. 2012;4(24):7825.

    CAS  Google Scholar 

  56. Li X, Xiao D, Zheng H, Wei X, Wang X, Gu L, Hu Y-S, Yang T, Chen Q. Ultrafast and reversible electrochemical lithiation of InAs nanowires observed by in situ transmission electron microscopy. Nano Energy. 2016;20:194.

    CAS  Google Scholar 

  57. Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):12597.

    CAS  Google Scholar 

  58. Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano. 2015;9(4):4379.

    CAS  Google Scholar 

  59. Li X, Zhao L, Li P, Zhang Q, Wang MS. In situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy. 2017;42:122.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. U1804132, 51802288 and 11504331), Academic Improvement Program of Physics of Zhengzhou University (No. 2018WLTJ02), Zhengzhou University Youth Talent Start-up Grant, Zhongyuan Youth Talent Support Program of Henan Province (No. ZYQR201912152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Ting Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Supplementary material 2 (MP4 1535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, LJ., Liu, RC., Yuan, HY. et al. Micro-structured lepidocrocite-type H1.07Ti1.73O4 as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance. Rare Met. 40, 1391–1401 (2021). https://doi.org/10.1007/s12598-020-01618-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01618-8

Keywords

Navigation