Skip to main content
Log in

Enhancing room-temperature thermoelectric performance of n-type Bi2Te3-based alloys via sulfur alloying

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bismuth-telluride-based alloys are the best thermoelectric materials used in commercial solid-state refrigeration near room temperature. Nevertheless, for n-type polycrystalline alloys, their thermoelectric figure of merit (zT) values at room temperature are often less than 1.0, due to the high electron concentration originating from the donor-like effect induced by the mechanical deformation process. Herein, carrier concentration for better performance near room temperature was optimized through manipulating intrinsic point defects by sulfur alloying. Sulfur alloying significantly decreases antisite defects concentration and suppresses donor-like effect, resulting in optimized carrier concentration and reduced electronic thermal conductivity. The hot deformation process was also applied to improve carrier mobility due to the enhanced texture. As a result, a high zT value of 1 at 300 K and peak zT value of 1.1 at 350 K were obtained for the twice hot-deformed Bi2Te2.7Se0.21S0.09 sample, which verifies sulfur alloying is an effective method to improve thermoelectric performance of n-type polycrystalline Bi2Te3-based alloys near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017;357(6358):1369.

    CAS  Google Scholar 

  2. Heremans JP, Cava RJ, Samarth N. Tetradymites as thermoelectrics and topological insulators. Nat Rev Mater. 2017;2(10):17049.

    CAS  Google Scholar 

  3. Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.

    Google Scholar 

  4. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    CAS  Google Scholar 

  5. Fu T, Xin J, Zhu T, Shen J, Fang T, Zhao X. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying. Sci Bull. 2019;64(14):1024.

    CAS  Google Scholar 

  6. Rowe DM. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press; 1995. 252.

    Google Scholar 

  7. Zhai R, Wu Y, Zhu T, Zhao X. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308.

    CAS  Google Scholar 

  8. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    CAS  Google Scholar 

  9. Zhao X, Ji X, Zhang Y, Zhu T, Tu J, Zhang X. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett. 2005;86(6):062111.

    Google Scholar 

  10. Li J, Tan Q, Li J, Liu D, Li F, Li Z, Zou M, Wang K. BiSbTe-based nanocomposites with high zT: the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater. 2013;23(35):4317.

    CAS  Google Scholar 

  11. Tang X, Xie W, Li H, Zhao W, Zhang Q, Niino M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl Phys Lett. 2007;90(1):012102.

    Google Scholar 

  12. Li J, Pan Y, Wu C, Sun F, Wei T. Processing of advanced thermoelectric materials. Sci China Technol Sci. 2017;60(9):1347.

    Google Scholar 

  13. Shen J, Zhu T, Zhao X, Zhang S, Yang S, Yin Z. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties. Energy Environ Sci. 2010;3(10):1519.

    CAS  Google Scholar 

  14. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li X, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109.

    CAS  Google Scholar 

  15. Xie W, He J, Kang H, Tang X, Zhu S, Laver M, Wang S, Copley JR, Brown CM, Zhang Q, Tritt TM. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 2010;10(9):3283.

    CAS  Google Scholar 

  16. Liu W, Jie Q, Kim HS, Ren Z. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 2015;87(1):357.

    CAS  Google Scholar 

  17. Zhang Q, Fang T, Liu F, Li A, Wu Y, Zhu T, Zhao X. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chem Asian J. 2020;15(18):2775.

    CAS  Google Scholar 

  18. Delves RT, Bowley AE, Hazelden DW, Goldsmid HJ. Anisotropy of the electrical conductivity in bismuth telluride. Proc Phys Soc. 1961;78(5):838.

    CAS  Google Scholar 

  19. Shen J, Hu L, Zhu T, Zhao X. The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys. Appl Phys Lett. 2011;99(12):124102.

    Google Scholar 

  20. Fang T, Li F, Wu Y, Zhang Q, Zhao X, Zhu T. Anisotropic thermoelectric properties of n-type Te-free (Bi, Sb)2Se3 with orthorhombic structure. ACS Appl Energy Mater. 2020;3(3):2070.

    CAS  Google Scholar 

  21. Yan X, Poudel B, Ma Y, Liu W, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren Z. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 2010;10(9):3373.

    CAS  Google Scholar 

  22. Hu L, Zhang Y, Wu H, Liu Y, Li J, He J, Ao WQ, Liu F, Pennycook SJ, Zeng X. Synergistic compositional-mechanical-thermal effects leading to a record high zT in n-type V2VI3 alloys through progressive hot deformation. Adv Funct Mater. 2018;28(35):1803617.

    Google Scholar 

  23. Hu L, Zhu T, Wang Y, Xie H, Xu Z, Zhao X. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 2014;6(2):e88.

    CAS  Google Scholar 

  24. Pan Y, Li J. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 2016;8(6):e275.

    CAS  Google Scholar 

  25. Zhao Y, Dyck JS, Hernandez BM, Burda C. Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J Phys Chem C. 2010;114(26):11607.

    CAS  Google Scholar 

  26. Miller GR, Li C. Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J Phys Chem Solids. 1965;26(1):173.

    CAS  Google Scholar 

  27. Brebrick RF. Homogeneity ranges and Te2-pressure along the three-phase curves for Bi2Te3 and 55–58 at.% Te, peritectic phase. J Phys Chem Solids. 1969;30(3):719.

    CAS  Google Scholar 

  28. Schultz JM, McHugh JP, Tiller WA. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys. 1962;33(8):2443.

    CAS  Google Scholar 

  29. Navrátil J, Starý Z, PlecháčEk T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull. 1996;31(12):1559.

    Google Scholar 

  30. Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ Sci. 2016;9(10):3120.

    CAS  Google Scholar 

  31. Wei Z, Wang C, Zhang J, Yang J, Li Z, Zhang Q, Luo P, Zhang W, Liu E, Luo J. Precise regulation of carrier concentration in thermoelectric BiSbTe alloys via magnetic doping. ACS Appl Mater Interfaces. 2020;12(18):20653.

    CAS  Google Scholar 

  32. Zhang X, Ma X, Lu Q, Zhang F, Liu Y, Zhang J, Wang L. Thermoelectric properties of Ag-doped n-type (Bi2−xAgxTe3)0.96 − (Bi2Se3)0.04 pseudobinary alloys. J Electron Mater. 2011;40(5):773.

    CAS  Google Scholar 

  33. Wu Y, Zhai R, Zhu T, Zhao X. Enhancing room temperature thermoelectric performance of n-type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation. Mater Today Phys. 2017;2(1):62.

    Google Scholar 

  34. Li B, Zhai R, Fang T, Xia K, Wu Y, Zhu T. Mid-temperature thermoelectric performance of zone-melted Sb2(Te, Se)3 alloys near phase transition boundary. J Materiomics. 2019;5(4):590.

    Google Scholar 

  35. Carlson RO. Anisotropic diffusion of copper into bismuth telluride. J Phys Chem Solids. 1960;13(1):65.

    CAS  Google Scholar 

  36. Zhang Q, Gu B, Wu Y, Zhu T, Fang T, Yang Y, Liu J, Ye B, Zhao X. Evolution of the intrinsic point defects in bismuth telluride based thermoelectric materials. ACS Appl Mater Interfaces. 2019;11(44):41424.

    CAS  Google Scholar 

  37. Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.

    Google Scholar 

  38. Birkholz VU. Untersuchung der intermetallischen Verbindung Bi2Te3 sowie der festen Lösungen Bi2−xSbxTe3 und Bi2Te3−xSex hinsichtlich ihrer Eignung als Material für Halbleiter-Thermoelemente. Phys Phys Chem. 1958;13(1):780.

    Google Scholar 

  39. Horak J, Lostak P, Koudelka L, Novotny R. Inversion of conductivity type in Bi2Te3−xSx crystals. Solid State Commun. 1985;55(22):1031.

    CAS  Google Scholar 

  40. Liu W, Lukas KC, McEnaney K, Lee S, Zhang Q, Opeil CP, Chen G, Ren Z. Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ Sci. 2013;6(2):552.

    CAS  Google Scholar 

  41. Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211.

    CAS  Google Scholar 

  42. Pan Y, Wei T, Wu C, Li J. Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: the combined effect of point defect and Se content. J Mater Chem C. 2015;3(40):10583.

    CAS  Google Scholar 

  43. Miller GR, Li C, Spencer CW. Properties of Bi2Te3–Bi2Se3 alloys. J Appl Phys. 1963;34(5):1398.

    CAS  Google Scholar 

  44. Xie W, He J, Zhu S, Holgate T, Wang S, Tang X, Zhang Q, Tritt TM. Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi, Sb)2Te3 thermoelectric materials. J Mater Res. 2011;26(15):1791.

    CAS  Google Scholar 

  45. Wang S, Yang J, Toll T, Yang J, Zhang W, Tang X. Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci Rep. 2015;5(1):10136.

    CAS  Google Scholar 

  46. May A, Snyder G. Introduction to modeling thermoelectric transport at high temperatures. In: Rowe DM, editor. Materials, Preparation, and Characterization in Thermoelectrics. Boca Raton: CRC Press; 2012. 1.

    Google Scholar 

  47. Li F, Zhai R, Wu Y, Xu Z, Zhao X, Zhu T. Enhanced thermoelectric performance of n-type bismuth-telluride-based alloys via In alloying and hot deformation for mid-temperature power generation. J Materiomics. 2018;4(3):208.

    CAS  Google Scholar 

  48. Qin H, Liu Y, Zhang Z, Wang Y, Cao J, Cai W, Zhang Q, Sui J. Improved thermoelectric performance of p-type Bi0.5Sb1.5Te3 through Mn doping at elevated temperature. Mater Today Phys. 2018;6(1):31.

    Google Scholar 

  49. Tang Z, Hu L, Zhu T, Liu X, Zhao X. High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C. 2015;3(40):10597.

    CAS  Google Scholar 

  50. Hu L, Gao H, Liu X, Xie H, Shen J, Zhu T, Zhao X. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J Mater Chem. 2012;22(32):16484.

    CAS  Google Scholar 

  51. Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater. 2015;5(17):1500411.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0704902) and the National Natural Science Foundation of China (Nos. 51871199 and 61534001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wu, YH., Zhang, Q. et al. Enhancing room-temperature thermoelectric performance of n-type Bi2Te3-based alloys via sulfur alloying. Rare Met. 40, 513–520 (2021). https://doi.org/10.1007/s12598-020-01615-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01615-x

Keywords

Navigation