Skip to main content
Log in

Hot corrosion of surface-modified Sm2Co17 high-temperature magnet with Ni and Ni/Cr bilayer coatings in 75 wt% Na2SO4–NaCl mixture

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hot corrosion behavior of Sm2(Co, Fe, Cu, Zr)17-type high-temperature magnetic alloy without and with a protective coating of Ni and Ni/Cr bilayer at 500 °C in a corrosive mixture of 75 wt% Na2SO4–NaCl for 100 h was reported in this paper. The obtained results of time-dependent weight change established the parabolic growth of oxidized surface of bare magnets (8.87 mg·cm−2), which caused a rapid loss of magnetic properties measured both at room and high temperatures (500 °C). X-ray diffraction (XRD) analysis revealed the growth of oxides for bare magnet and Cr–oxides (Cr2O3), top layer of Ni/Cr bilayer coating, but in the case of single coating, Ni–sulfides formation indicated penetration of sulfur, which is further verified by electron probe microanalysis with energy dispersive spectroscopy (EPMA/EDS) study. Results showed that bilayer-coated samples (Ni/Cr) performed better than Ni-coated and bare samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ray AE, Liu S. Recent progress in 2:17–type permanent magnets. J Mater Eng Perform. 1992;1(2):183.

    Article  CAS  Google Scholar 

  2. Yi JH, Peng YD. Review of research on 2:17 type SmCo rare earth permanent magnets. Rare Met Mater Eng. 2004;33(4):337.

    CAS  Google Scholar 

  3. Zhang TL, Liu HY, Jiang CB. 2:17-type SmCo quasi-single-crystal high temperature magnets. Appl Phys Lett. 2015;106(16):162403.

    Article  Google Scholar 

  4. Ma ZH, Zhang TL, Liu HY, Jiang CB. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng J. 2015;264:610.

    Article  CAS  Google Scholar 

  5. Richard TF, Rubertus CS. Air force applications of advanced magnetic materials. In: Proceeding of Materials Research Society Spring Conference, Vol 57. San Francisco; 1999. 481.

  6. Richard TF, Rubertus CS. Applications of high temperature magnetic materials. IEEE Trans Magn. 2000;36(5):3373.

    Article  Google Scholar 

  7. An SZ, Jiang CB. Recent progress in high temperature permanent magnetic materials. Rare Met. 2013;32(5):431.

    Article  Google Scholar 

  8. Chen CH, Walmer MS, Walmer MH, Liu S, Kuhl E. Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ⩾ 400 °C. J Appl Phys. 1998;83(11):6706.

    Article  CAS  Google Scholar 

  9. Liu JF, Chui T, Dimitrov D, Hadjipanayis GC. Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials. Appl Phys Lett. 1998;73(20):3007.

    Article  CAS  Google Scholar 

  10. Liu JF, Zhang Y, Dimitrov D, Hadjipanayis GC. Microstructure and high magnetic properties of Sm(Co, Cu, Fe, Zr)z (z = 6.7–9.1) permanent magnets. J Appl Phys 1999;85(5):2800.

  11. Liu JF, Ding Y, Dimitrov D, Hadjipanay GC. Effect of iron on the high magnetic properties and microstructure of Sm(Co, Fe, Cu, Zr)z permanent magnets. J Appl Phys. 1999;85(3):1670.

    Article  CAS  Google Scholar 

  12. Tang W, Zhang Y, Hadjipanayis GC. Microstructure and magnetic properties of Sm(CobalFexCu0.128Zr0.02)7.0 magnets with Fe substitution. J Magn Magn Mater. 2000;221(3):268.

  13. Guo ZH, Li W. Room-and high-temperature magnetic properties of Sm(CobalFexCu0.088Zr0.025)7.5 (x = 0–0.30) sintered magnets. Acta Metall Sin. 2002;38(8):866.

  14. Handstein A, Yan A, Martinek G, Gutfleisch O, Müller KH, Schultz L. Stability of magnetic properties of Sm2Co17-type magnets at operating temperatures higher than 400 °C. IEEE Trans Magn. 2003;39(5):2923.

    Article  CAS  Google Scholar 

  15. Chen CH, Walmer MS, Walmer MH, Liu S, Kuh GE. Thermal stability of Sm–TM high temperature magnets at 300–550 °C. IEEE Trans Magn. 2000;36(5):3291.

    Article  CAS  Google Scholar 

  16. Chen CH, Walmer MH, Kottcamp EH, Gong W. Surface reaction and Sm depletion at 550 °C for high temperature Sm–TM magnets. IEEE Trans Magn. 2001;37(4):2531.

    Article  CAS  Google Scholar 

  17. Kardelky S, Gebert A, Gutfleisch O, Hoffmann V, Schultz L. Prediction of the oxidation behaviour of Sm–Co-based magnets. J Magn Magn Mater. 2005;290–291:1226.

    Article  Google Scholar 

  18. Kardelky S, Gebert A, Gutfleisch O, Handstein A, Wyss U, Schultz L. Corrosion behavior of Sm–Co-based permanent magnets in oxidizing environments. IEEE Trans Magn. 2004;40(4):2931.

    Article  CAS  Google Scholar 

  19. Pragnell WM, Williams AJ, Evans HE. The oxidation of SmCo magnets. J Appl Phys. 2008;103:(7)127.

  20. Pragnell WM, Williams AJ, Evans HE. The oxidation morphology of SmCo alloys. J. Alloys Compd. 2009;487(1–2):69.

    Article  CAS  Google Scholar 

  21. Saunders SRJ, Nicholls JR. Coating and surface treatment for high temperature oxidation resistance. Mater Sci Technol. 1989;5(8):780.

    Article  CAS  Google Scholar 

  22. Chen CH, Walmer MH, Liu S. Thermal stability and the effectiveness of coatings for SmCo 2:17 high temperature magnets at temperature up to 550 °C. IEEE Trans Magn. 2004;40(4):2928.

    Article  CAS  Google Scholar 

  23. Chen CH, Huang MQ, Foster JE, Monnette G, Middleton J, Higgins A, Liu S. Effect of surface modification on mechanical properties and thermal stability of Sm–Co high temperature magnetic materials. Surf Coat Technol. 2006;201(6):3430.

    Article  CAS  Google Scholar 

  24. Wang Q, Zheng L, An SZ, Zhang TL, Jiang CB. Thermal stability of surface modified Sm2Co17-type high temperature magnets. J Magn Magn Mater. 2013;331:245.

    Article  CAS  Google Scholar 

  25. Pragnell WM, Evans HE, Williams AJ. Oxidation protection of Sm2Co17-based alloys. J Alloys Compd. 2012;517(15):92.

    Article  CAS  Google Scholar 

  26. Pragnell WM, Evans HE, Williams AJ. The oxidation kinetics of SmCo alloys. J Alloys Compd. 2009;473(1–2):389.

    Article  CAS  Google Scholar 

  27. Yang Z, Peng X, Feng Q, Guo Z, Li W, Wang F. The mechanism of high temperature oxidation of a SmCo-based magnetic alloy. Corros Sci. 2012;61:72.

    Article  CAS  Google Scholar 

  28. Dong Z, Peng X, Guo Z, Li W, Wang F. The effect of a surface Cr film on the oxidation of SmCo-based magnetic alloy at 700 °C. Corros Sci. 2013;77:113.

    Article  CAS  Google Scholar 

  29. Cui J, Kramer M, Zhou L, Liu F, Gabay A, Hadjipanayis G, Balasubramanian B, Sellmyer D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018;158:118.

    Article  CAS  Google Scholar 

  30. B Saira, Wang J, M. Faisal Rathore, Jiang CB. Temperature stability of SmCo (2:17) magnets modified by Ni–Cr two layers coating. Rare Met. 2019;38(3):238.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51761145026 and 51471016) and the Natural Science Foundation of Beijing (No. 2151002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Bibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, S., Wang, JM., Mehmood, T. et al. Hot corrosion of surface-modified Sm2Co17 high-temperature magnet with Ni and Ni/Cr bilayer coatings in 75 wt% Na2SO4–NaCl mixture. Rare Met. 40, 2494–2500 (2021). https://doi.org/10.1007/s12598-020-01604-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01604-0

Keywords

Navigation