Skip to main content
Log in

Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The electrochemical CO2 reduction (ECR) into value-added products presents an appealing approach to mitigate CO2 emission caused by excess consumption of fossil fuels. To obtain high catalytic activity and selectivity toward target product in ECR, designing and developing a stable and efficient electrocatalyst is of significant importance. To date, metal nanomaterials have been widely applied as electrocatalysts for ECR due to their unique physicochemical properties. The structural modulation of metal nanomaterials is an attractive strategy to improve the catalytic performance. In this review, the recent progress of structural modulation, including size, facet, grain boundary, composition, interface, ligand modification, and crystal phase, is systematically summarized from both theoretical and experimental aspects. Finally, the opportunities and perspectives of structural modulation of metal nanomaterials for ECR are proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen Y, Fan ZX, Zhang ZC, Niu WX, Li CL, Yang NL, Chen B, Zhang H. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev. 2018;118(13):6409.

    CAS  Google Scholar 

  2. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev. 2009;38(1):89.

    CAS  Google Scholar 

  3. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. 2013;113(8):6621.

    CAS  Google Scholar 

  4. Costentin C, Robert M, Saveant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev. 2013;42(6):2423.

    CAS  Google Scholar 

  5. Qiao JL, Liu YY, Hong F, Zhang JJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631.

    CAS  Google Scholar 

  6. Zhang ZY, Chi MF, Veith GM, Zhang PF, Lutterman DA, Rosenthal J, Overbury SH, Dai S, Zhu H. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects. ACS Catal. 2016;6(9):6255.

    CAS  Google Scholar 

  7. Zhu DD, Liu JL, Qiao SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater. 2016;28(18):3423.

    CAS  Google Scholar 

  8. Jin HY, Guo CX, Liu X, Liu JL, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.

    CAS  Google Scholar 

  9. Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018;3(7):1545.

    CAS  Google Scholar 

  10. Tian ZQ, Priest C, Chen L. Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Adv Theory Simul. 2018;1(5):1800004.

    Google Scholar 

  11. Zheng TT, Jiang K, Wang HT. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv Mater. 2018;30(48):1802066.

    Google Scholar 

  12. Zhong JW, Yang XF, Wu ZL, Liang BL, Huang YQ, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev. 2020;49(5):1385.

    CAS  Google Scholar 

  13. Jiang X, Nie XW, Guo XW, Song CS, Chen JGG. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev. 2020;120(15):7984.

    CAS  Google Scholar 

  14. Chen GZ, Chen KJ, Fu JW, Liu M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020;39(6):607.

    CAS  Google Scholar 

  15. Nitopi S, Bertheussen E, Scott SB, Liu XY, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610.

    CAS  Google Scholar 

  16. Xia ZH, Guo SJ. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev. 2019;48(12):3265.

    CAS  Google Scholar 

  17. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998.

    Google Scholar 

  18. Yang YL, Tang Y, Jiang HM, Chen YM, Wan PY, Fan MH, Zhang RR, Ullah S, Pan L, Zou JJ, Lao MM, Sun WP, Yang C, Zheng GF, Peng QL, Wang T, Luo YL, Sun XP, Konev AS, Levin OV, Lianos P, Hu ZF, Shen ZR, Zhao QL, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang HP, Zhang L, Sun SM, Wang WZ, Ma JM. 2020 roadmap on gas-involved photo- and electro—catalysis. Chin Chem Lett. 2019;30(12):2089.

    CAS  Google Scholar 

  19. Zhang N, Long R, Gao C, Xiong YJ. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater. 2018;61(6):771.

    CAS  Google Scholar 

  20. Zhang L, Zhao ZJ, Gong JL. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed. 2017;56(38):11326.

    CAS  Google Scholar 

  21. Wang YH, Liu JL, Wang YF, Al-Enizi AM, Zheng GF. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small. 2017;13(43):1701809.

    Google Scholar 

  22. Nam DH, De Luna P, Rosas-Hernández A, Thevenon A, Li FW, Agapie T, Peters JC, Shekhah O, Eddaoudi M, Sargent EH. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater. 2020;19(3):266.

    CAS  Google Scholar 

  23. Long C, Li X, Guo J, Shi YN, Liu SQ, Tang ZY. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives. Small Methods. 2019;3(3):1800369.

    Google Scholar 

  24. Li FW, MacFarlane DR, Zhang J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale. 2018;10(14):6235.

    CAS  Google Scholar 

  25. Fan L, Xia C, Yang FQ, Wang J, Wang HT, Lu YY. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020;6(8):eaay3111.

    CAS  Google Scholar 

  26. Gao DF, Cai F, Wang GX, Bao XH. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem. 2017;3:39.

    Google Scholar 

  27. Gao DF, Arán-Ais RM, Jeon HS, Roldan CB. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal. 2019;2(3):198.

    CAS  Google Scholar 

  28. Han N, Wang Y, Yang H, Deng J, Wu JH, Li YF, Li YG. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun. 2018;9:1320.

    Google Scholar 

  29. Aran-Ais RM, Gao DF, Roldan CB. Structure—and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res. 2018;51(11):2906.

    CAS  Google Scholar 

  30. Kim C, Dionigi F, Beermann V, Wang XL, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater. 2019;31(31):1806517.

    Google Scholar 

  31. Ross MB, De Luna P, Li YF, Dinh CT, Kim D, Yang P, Sargent EH. Designing materials for electrochemical carbon dioxide recycling. Nat Catal. 2019;2(8):648.

    CAS  Google Scholar 

  32. Xie H, Wang TY, Liang JS, Li Q, Sun SH. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today. 2018;21:41.

    Google Scholar 

  33. Li H, Chen C, Yan DF, Wang YY, Chen R, Zou YQ, Wang SY. Interfacial effects in supported catalysts for electrocatalysis. J Mater Chem A. 2019;7(41):23432.

    CAS  Google Scholar 

  34. Han N, Ding P, He L, Li YY, Li YG. Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater. 2019;10(11):1902338.

    Google Scholar 

  35. Chen ZS, Zhang GX, Prakash J, Zheng Y, Sun SH. Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide. Adv Energy Mater. 2019;9(37):1900889.

    CAS  Google Scholar 

  36. Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019;4(9):732.

    CAS  Google Scholar 

  37. Zhang ZC, Xu B, Wang X. Engineering nanointerfaces for nanocatalysis. Chem Soc Rev. 2014;43(22):7870.

    CAS  Google Scholar 

  38. Nosheen F, Wasfi N, Aslam S, Anwar T, Hussain S, Hussain N, Shah SN, Shaheen N, Ashraf A, Zhu YT, Wang HQ, Ma JM, Zhang ZC, Hu WP. Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale. 2020;12(7):4219.

    CAS  Google Scholar 

  39. Yang CH, Li SY, Zhang ZC, Wang HQ, Liu HL, Jiao F, Guo ZG, Zhang XT, Hu WP. Organic–inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small. 2020;16(29):2001827.

    Google Scholar 

  40. Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, Min BK. Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer. Catal Today. 2016;260:107.

    CAS  Google Scholar 

  41. Ma M, Djanashvili K, Smith WA. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew Chem Int Ed. 2016;55(23):6680.

    CAS  Google Scholar 

  42. Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem Int Ed. 2016;55(19):5789.

    CAS  Google Scholar 

  43. Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc. 2014;136(19):6978.

    CAS  Google Scholar 

  44. Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright C, Sun XL, Peterson AA, Sun SH. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2013;135(45):16833.

    CAS  Google Scholar 

  45. Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Roldan CB. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc. 2014;136(47):16473.

    CAS  Google Scholar 

  46. Salehi-Khojin A, Jhong HRM, Rosen BA, Zhu W, Ma SC, Kenis PJA, Masel RI. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C. 2013;117(4):1627.

    CAS  Google Scholar 

  47. Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc. 2015;137(43):13844.

    CAS  Google Scholar 

  48. Gao DF, Zhou H, Wang J, Miao S, Yang F, Wang GX, Wang JG, Bao XH. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc. 2015;137(13):4288.

    CAS  Google Scholar 

  49. Manthiram K, Beberwyck BJ, Alivisatos AP. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc. 2014;136(38):13319.

    CAS  Google Scholar 

  50. Kim D, Kley CS, Li YF, Yang PD. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA. 2017;114(40):10560.

    CAS  Google Scholar 

  51. Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, Sáez A, Montiel V, Irabien A. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: effect of metal loading and particle size. Appl Energy. 2015;157:165.

    Google Scholar 

  52. Mistry H, Behafarid F, Reske R, Varela AS, Strasser P, Roldan CB. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 2016;6(2):1075.

    CAS  Google Scholar 

  53. Liu HL, Zhu YT, Ma JM, Zhang ZC, Hu WP. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater. 2020;30(17):1910534.

    CAS  Google Scholar 

  54. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat Chem. 2011;3(8):634.

    CAS  Google Scholar 

  55. Jiao L, Jiang HL. Metal-organic-framework-based single-atom catalysts for energy applications. Chem. 2019;5(4):786.

    CAS  Google Scholar 

  56. Cheng Y, Yang SZ, Jiang SP, Wang SY. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods. 2019;3(9):1800440.

    Google Scholar 

  57. Yan CC, Li HB, Ye YF, Wu HH, Cai F, Si R, Xiao JP, Miao S, Xie SH, Yang F, Li YS, Wang GX, Bao XH. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci. 2018;11(5):1204.

    CAS  Google Scholar 

  58. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc. 2017;139(49):18093.

    CAS  Google Scholar 

  59. Vickers JW, Alfonso D, Kauffman DR. Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technol. 2017;5(6):775.

    CAS  Google Scholar 

  60. Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MTM, Strasser P. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett. 2013;4(15):2410.

    CAS  Google Scholar 

  61. Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Nørskov JK, Chorkendorff I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys. 2012;14(1):76.

    CAS  Google Scholar 

  62. Yang DR, Liu L, Zhang Q, Shi Y, Zhou Y, Liu CG, Wang FB, Xia XH. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci Bull. 2020;65(10):796.

    CAS  Google Scholar 

  63. Schouten KJP, Qin ZS, Gallent EP, Koper MTM. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc. 2012;134(24):9864.

    CAS  Google Scholar 

  64. Luo WJ, Nie XW, Janik MJ, Asthagiri A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 2015;6(1):219.

    Google Scholar 

  65. Huang Y, Handoko AD, Hirunsit P, Yeo BS. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017;7(3):1749.

    CAS  Google Scholar 

  66. Roberts FS, Kuhl KP, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem Int Ed. 2015;54(17):5179.

    CAS  Google Scholar 

  67. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B. 2002;106(1):15.

    CAS  Google Scholar 

  68. Wang ZN, Yang G, Zhang ZR, Jin MS, Yin YD. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano. 2016;10(4):4559.

    CAS  Google Scholar 

  69. Montoya JH, Shi C, Chan K, Nørskov JK. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett. 2015;6(11):2032.

    CAS  Google Scholar 

  70. Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed. 2013;52(28):7282.

    CAS  Google Scholar 

  71. Nie XW, Luo WJ, Janik MJ, Asthagiri A. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal. 2014;312:108.

    CAS  Google Scholar 

  72. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Nørskov JK. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci. 2011;605(15–16):1354.

    CAS  Google Scholar 

  73. Ledezma-Yanez I, Gallent EP, Koper MTM, Calle-Vallejo F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal Today. 2016;262:90.

    CAS  Google Scholar 

  74. Varela AS, Kroschel M, Reier T, Strasser P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today. 2016;260:8.

    CAS  Google Scholar 

  75. Ren D, Deng YL, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015;5(5):2814.

    CAS  Google Scholar 

  76. Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature. 2014;508(7497):504.

    CAS  Google Scholar 

  77. Chen CS, Handoko AD, Wan JH, Ma L, Ren D, Yeo BS. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal Sci Technol. 2015;5(1):161.

    CAS  Google Scholar 

  78. Gao DF, Zegkinoglou I, Divins NJ, Scholten F, Sinev I, Grosse P, Roldan CB. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano. 2017;11(5):4825.

    CAS  Google Scholar 

  79. De Gregorio GL, Burdyny T, Loiudice A, Iyengar P, Smith WA, Buonsanti R. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 2020;10(9):4854.

    Google Scholar 

  80. Wang YH, Wang ZY, Dinh CT, Li J, Ozden A, Kibria MG, Seifitokaldani A, Tan CS, Gabardo CM, Luo MC, Zhou H, Li FW, Lum Y, McCallum C, Xu Y, Liu MX, Proppe A, Johnston A, Todorovic P, Zhuang TT, Sinton D, Kelley SO, Sargent EH. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal. 2019;3(2):98.

    Google Scholar 

  81. Sen S, Liu D, Palmore GTR. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 2014;4(9):3091.

    CAS  Google Scholar 

  82. Hahn C, Hatsukade T, Kim YG, Vailionis A, Baricuatro JH, Higgins DC, Nitopi SA, Soriaga MP, Jaramillo TF. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc Natl Acad Sci USA. 2017;114(23):5918.

    CAS  Google Scholar 

  83. Hoshi N, Kato M, Hori Y. Electrochemical reduction of CO, on single crystal electrodes of silver Ag{111}, Ag{100} and Ag{110}. J Electroanal Chem. 1997;440:283.

    CAS  Google Scholar 

  84. Liu SB, Tao HB, Zeng L, Liu Q, Xu ZG, Liu QX, Luo JL. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc. 2017;139(6):2160.

    CAS  Google Scholar 

  85. Zhang QF, Wang H. Facet-dependent catalytic activities of Au nanoparticles enclosed by high-index facets. ACS Catal. 2014;4(11):4027.

    CAS  Google Scholar 

  86. Liu M, Pang YJ, Zhang B, De Luna P, Voznyy O, Xu JX, Zheng XL, Dinh CT, Fan FJ, Cao CH, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature. 2016;537(7620):382.

    CAS  Google Scholar 

  87. Lee HE, Yang KD, Yoon SM, Ahn HY, Lee YY, Chang HJ, Jeong DH, Lee YS, Kim MY, Nam KT. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano. 2015;9(8):8384.

    CAS  Google Scholar 

  88. Zhu WL, Zhang YJ, Zhang HY, Lv HF, Li Q, Michalsky R, Peterson AA, Sun SH. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc. 2014;136(46):16132.

    CAS  Google Scholar 

  89. Li L, Ma DK, Qi FXY, Chen W, Huang SM. Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochim Acta. 2019;298:580.

    CAS  Google Scholar 

  90. Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):16019.

    CAS  Google Scholar 

  91. Feng XF, Jiang KL, Fan SS, Kanan MW. Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc. 2015;137(14):4606.

    CAS  Google Scholar 

  92. Mariano RG, McKelvey K, White HS, Kanan MW. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science. 2017;358(6367):1187.

    CAS  Google Scholar 

  93. Kim KS, Kim WJ, Lim HK, Lee EK, Kim H. Tuned chemical bonding ability of Au at grain boundaries for enhanced electrochemical CO2 reduction. ACS Catal. 2016;6(7):4443.

    CAS  Google Scholar 

  94. Dong CK, Fu JY, Liu H, Ling T, Yang J, Qiao SZ, Du XW. Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. J Mater Chem A. 2017;5(15):7184.

    CAS  Google Scholar 

  95. Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc. 2015;137(31):9808.

    CAS  Google Scholar 

  96. Raciti D, Livi KJ, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015;15(10):6829.

    CAS  Google Scholar 

  97. Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc. 2012;134(17):7231.

    CAS  Google Scholar 

  98. Feng XF, Jiang KL, Fan SS, Kanan MW. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci. 2016;2(3):169.

    CAS  Google Scholar 

  99. Mi YY, Shen SB, Peng XY, Bao HH, Liu XJ, Luo J. Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires. ChemElectroChem. 2019;6(9):2393.

    CAS  Google Scholar 

  100. Chen CJ, Sun XF, Yan XP, Wu YH, Liu MY, Liu SS, Zhao ZJ, Han BX. A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products. Green Chem. 2020;22(5):1572.

    CAS  Google Scholar 

  101. Chen ZQ, Wang T, Liu B, Cheng DF, Hu CL, Zhang G, Zhu WJ, Wang HY, Zhao ZJ, Gong JL. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J Am Chem Soc. 2020;142(15):6878.

    CAS  Google Scholar 

  102. Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 2016;6(3):2100.

    CAS  Google Scholar 

  103. Hahn C, Abram DN, Hansen HA, Hatsukade T, Jackson A, Johnson NC, Hellstern TR, Kuhl KP, Cave ER, Feaster JT, Jaramillo TF. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A. 2015;3(40):20185.

    CAS  Google Scholar 

  104. Bai XF, Chen W, Zhao CC, Li SG, Song YF, Ge RP, Wei W, Sun YH. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew Chem Int Ed. 2017;56(40):12219.

    CAS  Google Scholar 

  105. Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem Int Ed. 2015;54(7):2146.

    CAS  Google Scholar 

  106. Xu ZC, Lai EC, Shao-Horn Y, Hamad-Schifferli K. Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun. 2012;48(45):5626.

    CAS  Google Scholar 

  107. Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J Phys Chem C. 2013;117(16):8262.

    CAS  Google Scholar 

  108. He R, Wang YC, Wang XY, Wang ZT, Liu G, Zhou W, Wen LP, Li QX, Wang XP, Chen XY, Zeng J, Hou JG. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun. 2014;5:4327.

    CAS  Google Scholar 

  109. Jia FL, Yu XX, Zhang LZ. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J Power Sources. 2014;252:85.

    CAS  Google Scholar 

  110. Zhao WG, Yang LN, Yin YD, Jin MS. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J Mater Chem A. 2014;2(4):902.

    CAS  Google Scholar 

  111. Hirunsit P, Soodsawang W, Limtrakul J. CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J Phys Chem C. 2015;119(15):8238.

    CAS  Google Scholar 

  112. Mistry H, Reske R, Strasser P, Roldan CB. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal Today. 2017;288:30.

    CAS  Google Scholar 

  113. Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang PD. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J Am Chem Soc. 2017;139(27):9359.

    CAS  Google Scholar 

  114. Liu K, Ma M, Wu LF, Valenti M, Cardenas-Morcoso D, Hofmann JP, Bisquert J, Gimenez S, Smith WA. Electronic effects determine the selectivity of planar Au–Cu bimetallic thin films for electrochemical CO2 reduction. ACS Appl Mater Interfaces. 2019;11(18):16546.

    CAS  Google Scholar 

  115. Kim D, Resasco J, Yu Y, Asiri AM, Yang PD. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun. 2014;5:4948.

    CAS  Google Scholar 

  116. Kim D, Xie CL, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc. 2017;139(24):8329.

    CAS  Google Scholar 

  117. Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJ. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc. 2017;139(1):47.

    CAS  Google Scholar 

  118. Yang Y, Luo MC, Zhang WY, Sun YJ, Chen X, Guo SJ. Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem. 2018;4(9):2054.

    CAS  Google Scholar 

  119. Wang YF, Han P, Lv XM, Zhang LJ, Zheng GF. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule. 2018;2(12):2551.

    CAS  Google Scholar 

  120. Vasileff A, Xu CC, Jiao Y, Zheng Y, Qiao SZ. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem. 2018;4(8):1809.

    CAS  Google Scholar 

  121. Shao Q, Wang PT, Huang XQ. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Funct Mater. 2019;29(3):1806419.

    Google Scholar 

  122. Kattel S, Liu P, Chen JGG. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc. 2017;139(29):9739.

    CAS  Google Scholar 

  123. Ge RY, Huo JJ, Sun MJ, Zhu MY, Li Y, Chou SL, Li WX. Surface and interface engineering: molybdenum carbide-based nanomaterials for electrochemical energy conversion. Small. 2019. https://doi.org/10.1002/smll.201903380.

    Article  Google Scholar 

  124. Wang HX, Tzeng YK, Ji YF, Li YB, Li J, Zheng XL, Yang AK, Liu YY, Gong YJ, Cai LL, Li YZ, Zhang XK, Chen W, Liu BF, Lu HY, Melosh NA, Shen ZX, Chan KR, Tan TW, Chu S, Cui Y. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat Nanotechnol. 2020;15(2):131.

    CAS  Google Scholar 

  125. Tan DX, Cui CN, Shi JB, Luo ZX, Zhang BX, Tan XN, Han BX, Zheng LR, Zhang J, Zhang JL. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res. 2019;12(5):1167.

    CAS  Google Scholar 

  126. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93(15):156801.

    CAS  Google Scholar 

  127. Plana D, Florez-Montano J, Celorrio V, Pastor E, Fermin DJ. Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores. Chem Commun. 2013;49(93):10962.

    CAS  Google Scholar 

  128. Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016;6(5):2842.

    CAS  Google Scholar 

  129. Zhao Y, Wang CY, Wallace GG. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J Mater Chem A. 2016;4(27):10710.

    CAS  Google Scholar 

  130. Maark TA, Nanda BRK. Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures. J Phys Chem C. 2017;121(8):4496.

    Google Scholar 

  131. Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C. 2013;117(40):20500.

    CAS  Google Scholar 

  132. Low QH, Loo NWX, Calle-Vallejo F, Yeo BS. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew Chem Int Ed. 2019;58(8):2256.

    CAS  Google Scholar 

  133. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem. 2010;2(6):454.

    CAS  Google Scholar 

  134. Lysgaard S, Myrdal JSG, Hansen HA, Vegge T. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction. Phys Chem Chem Phys. 2015;17(42):28270.

    CAS  Google Scholar 

  135. Li Q, Fu JJ, Zhu WL, Chen ZZ, Shen B, Wu LH, Xi Z, Wang TY, Lu G, Zhu JJ, Sun S. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc. 2017;139(12):4290.

    CAS  Google Scholar 

  136. Zhu SQ, Qin XP, Wang Q, Li TH, Tao R, Gu M, Shao MH. Composition-dependent CO2 electrochemical reduction activity and selectivity on Au–Pd core–shell nanoparticles. J Mater Chem A. 2019;7(28):16954.

    CAS  Google Scholar 

  137. Ma XM, Shen YL, Yao S, An CH, Zhang WQ, Zhu JF, Si R, Guo CX, An CH. Core–shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J Mater Chem A. 2020;8(6):3344.

    CAS  Google Scholar 

  138. Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias FJ, Solla-Gullón J, Koper MTM, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J Mater Chem A. 2015;3(47):23690.

    Google Scholar 

  139. Sun K, Cheng T, Wu LN, Hu YF, Zhou JG, Maclennan A, Jiang ZH, Gao YZ, Goddard WA, Wang ZJ. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J Am Chem Soc. 2017;139(44):15608.

    CAS  Google Scholar 

  140. Chen YH, Kanan MW. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc. 2012;134(4):1986.

    CAS  Google Scholar 

  141. Gao S, Lin Y, Jiao XC, Sun YF, Luo QQ, Zhang WH, Li DQ, Yang JL, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature. 2016;529(7584):68.

    CAS  Google Scholar 

  142. Kattel S, Ramirez PJ, Chen JG, Rodriguez JA, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 2017;355(6331):1296.

    CAS  Google Scholar 

  143. Matsubu JC, Zhang SY, DeRita L, Marinkovic NS, Chen JGG, Graham GW, Pan XQ, Christopher P. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem. 2017;9(2):120.

    CAS  Google Scholar 

  144. Gao DF, Zhang Y, Zhou ZW, Cai F, Zhao XF, Huang WG, Li YS, Zhu JF, Liu P, Yang F, Wang GX, Bao XH. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc. 2017;139(16):5652.

    CAS  Google Scholar 

  145. Zhang WY, Qin Q, Dai L, Qin RX, Zhao XJ, Chen XM, Ou DH, Chen J, Chuong TT, Wu BH, Zheng NF. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew Chem Int Ed. 2018;57(30):9475.

    CAS  Google Scholar 

  146. Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc. 2017;139(5):1885.

    CAS  Google Scholar 

  147. Gangeri M, Perathoner S, Caudo S, Centi G, Amadou J, Bégin D, Pham-Huu C, Ledoux MJ, Tessonnier JP, Su D, Schlogi R. Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today. 2009;143(1–2):57.

    CAS  Google Scholar 

  148. Hayden BE. Particle size and support effects in electrocatalysis. Acc Chem Res. 2013;46(8):1858.

    CAS  Google Scholar 

  149. Xiao JP, Frauenheim T. Theoretical insights into CO2 activation and reduction on the Ag(111) monolayer supported on a ZnO(0001) substrate. J Phys Chem C. 2013;117(4):1804.

    CAS  Google Scholar 

  150. Min XQ, Kanan MW. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc. 2015;137(14):4701.

    CAS  Google Scholar 

  151. Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J Catal. 2016;343:266.

    Google Scholar 

  152. Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: catalyst evolution is the key. ACS Catal. 2016;6(9):6265.

    Google Scholar 

  153. Baturina O, Lu Q, Xu F, Purdy A, Dyatkin B, Sang X, Unocic R, Brintlinger T, Gogotsi Y. Effect of nanostructured carbon support on copper electrocatalytic activity toward CO2 electroreduction to hydrocarbon fuels. Catal Today. 2017;288:2.

    CAS  Google Scholar 

  154. Cai F, Gao DF, Si R, Ye YF, He T, Miao S, Wang GX, Bao XH. Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem Commun. 2017;76:1.

    CAS  Google Scholar 

  155. Larrazabal GO, Martin AJ, Perez-Ramirez J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J Phys Chem Lett. 2017;8(16):3933.

    CAS  Google Scholar 

  156. Grosse P, Gao DF, Scholten F, Sinev I, Mistry H, Roldan CB. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew Chem Int Ed. 2018;57(21):6192.

    CAS  Google Scholar 

  157. Huo YJ, Peng XY, Liu XJ, Li HY, Luo J. High selectivity toward C2H4 production over Cu particles supported by butterfly-wing-derived carbon frameworks. ACS Appl Mater Interfaces. 2018;10(15):12618.

    CAS  Google Scholar 

  158. Jin L, Liu B, Wang P, Yao HQ, Achola LA, Kerns P, Lopes A, Yang Y, Ho JS, Moewes A, Pei Y, He J. Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity. Nanoscale. 2018;10(30):14678.

    CAS  Google Scholar 

  159. Melchionna M, Bracamonte MV, Giuliani A, Nasi L, Montini T, Tavagnacco C, Bonchio M, Fornasiero P, Prato M. Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid. Energy Environ Sci. 2018;11(6):1571.

    CAS  Google Scholar 

  160. Miola M, Hu XM, Brandiele R, Bjerglund ET, Grønseth DK, Durante C, Pedersen SU, Lock N, Skrydstrup T, Daasbjerg K. Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J CO2 Util. 2018;28:50.

    CAS  Google Scholar 

  161. Zhang Y, Hu L, Han W. Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. J Mater Chem A. 2018;6(46):23610.

    CAS  Google Scholar 

  162. Daiyan R, Lu X, Tan X, Zhu X, Chen R, Smith SC, Amal R. Antipoisoning nickel–carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Appl Energy Materials. 2019;2(11):8002.

    CAS  Google Scholar 

  163. Mavrokefalos CK, Kaeffer N, Liu HJ, Krumeich F, Copéret C. Small and narrowly distributed copper nanoparticles supported on carbon prepared by surface organometallic chemistry for selective hydrogenation and CO2 electroconversion processes. ChemCatChem. 2019;12(1):305.

    Google Scholar 

  164. Wu SY, Chen HT. CO2 electrochemical reduction catalyzed by graphene supported palladium cluster: a computational guideline. ACS Appl Energy Mater. 2019;2(2):1544.

    CAS  Google Scholar 

  165. Choukroun D, Daems N, Kenis T, Van Everbroeck T, Hereijgers J, Altantzis T, Bals S, Cool P, Breugelmans T. Bifunctional nickel–nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction. J Phys Chem C. 2020;124(2):1369.

    CAS  Google Scholar 

  166. Daiyan R, Chen R, Kumar P, Bedford NM, Qu JT, Cairney JM, Lu XY, Amal R. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Appl Mater Interfaces. 2020;12(8):9307.

    CAS  Google Scholar 

  167. Duan YX, Liu KH, Zhang Q, Yan JM, Jiang Q. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods. 2020;4(5):1900846.

    CAS  Google Scholar 

  168. Han H, Noh Y, Kim Y, Park S, Yoon W, Jang D, Choi SM, Kim WB. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 2020;22(1):71.

    CAS  Google Scholar 

  169. Payra S, Shenoy S, Chakraborty C, Tarafder K, Roy S. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl Mater Interfaces. 2020;12(17):19402.

    CAS  Google Scholar 

  170. Baturina OA, Lu Q, Padilla MA, Xin L, Li WZ, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins GE. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 2014;4(10):3682.

    CAS  Google Scholar 

  171. Ma SC, Lan YC, Perez GMJ, Moniri S, Kenis PJA. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. Chemsuschem. 2014;7(3):866.

    CAS  Google Scholar 

  172. Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J Am Chem Soc. 2017;139(11):4052.

    CAS  Google Scholar 

  173. Wang JJ, Kattel S, Hawxhurst CJ, Lee JH, Tackett BM, Chang K, Rui N, Liu CJ, Chen JGG. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew Chem Int Ed. 2019;58(19):6271.

    CAS  Google Scholar 

  174. Zhang YY, Li K, Chen MM, Wang J, Liu JD, Zhang YT. Cu/Cu2O nanoparticles supported on vertically ZIF-L-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl Nano Mater. 2019;3(1):257.

    Google Scholar 

  175. Pankhurst JR, Guntern YT, Mensi M, Buonsanti R. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO2 reduction. Chem Sci. 2019;10(44):10356.

    CAS  Google Scholar 

  176. Lau GPS, Schreier M, Vasilyev D, Scopelliti R, Gratzel M, Dyson PJ. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J Am Chem Soc. 2016;138(25):7820.

    CAS  Google Scholar 

  177. Kim C, Eom T, Jee MS, Jung H, Kim H, Min BK, Hwang YJ. Insight into electrochemical CO2 reduction on surface-molecule mediated Ag nanoparticles. ACS Catal. 2017;7(1):779.

    CAS  Google Scholar 

  178. Wu YS, Yuan XL, Tao ZX, Wang HL. Bifunctional electrocatalysis for CO2 reduction via surface capping-dependent metal-oxide interactions. Chem Commun. 2019;55(60):8864.

    CAS  Google Scholar 

  179. Chung MW, Cha IY, Ha MG, Na Y, Hwang J, Ham HC, Kim HJ, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH. Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl Catal B. 2018;237:673.

    CAS  Google Scholar 

  180. Cao Z, Zacate SB, Sun XD, Liu JJ, Hale EM, Carson WP, Tyndall SB, Xu J, Liu XW, Liu XC, Song C, Luo JH, Cheng MJ, Wen XD, Liu W. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(39):12675.

    CAS  Google Scholar 

  181. Wagner A, Ly KH, Heidary N, Szabo I, Foldes T, Assaf KI, Barrow SJ, Sokolowski K, Al-Hada M, Kornienko N, Kuehnel MF, Rosta E, Zebger I, Nau WM, Scherman OA, Reisner E. Host−guest chemistry meets electrocatalysis: cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 2020;10(1):751.

    CAS  Google Scholar 

  182. Tamura J, Ono A, Sugano Y, Huang CC, Nishizawa H, Mikoshiba S. Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. Phys Chem Chem Phys. 2015;17(39):26072.

    CAS  Google Scholar 

  183. Fang YX, Flake JC. Electrochemical reduction of CO2 at functionalized Au electrodes. J Am Chem Soc. 2017;139(9):3399.

    CAS  Google Scholar 

  184. Li FW, Li YGC, Wang ZY, Li J, Nam DH, Lum Y, Luo MC, Wang X, Ozden A, Hung SF, Chen B, Wang YH, Wicks J, Xu Y, Li YL, Gabardo CM, Dinh CT, Wang Y, Zhuang TT, Sinton D, Sargent EH. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat Catal. 2019;3(1):75.

    Google Scholar 

  185. Li FW, Thevenon A, Rosas-Hernandez A, Wang ZY, Li YL, Gabardo CM, Ozden A, Dinh CT, Li J, Wang YH, Edwards JP, Xu Y, McCallum C, Tao LZ, Liang ZQ, Luo MC, Wang X, Li HH, O'Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YGC, Han ZJ, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Molecular tuning of CO2-to-ethylene conversion. Nature. 2019;577(7791):509.

    Google Scholar 

  186. Han ZJ, Kortlever R, Chen HY, Peters JC, Agapie T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent Sci. 2017;3(8):853.

    CAS  Google Scholar 

  187. Thevenon A, Rosas-Hernandez A, Peters JC, Agapie T. In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additivepromotes electrocatalytic CO2 reduction to ethylene. Angew Chem Int Ed. 2019;58(47):16952.

    CAS  Google Scholar 

  188. Buckley AK, Lee M, Cheng T, Kazantsev RV, Larson DM, Goddard WA, Toste FD, Toma FM. Electrocatalysis at organic-metal interfaces: identification of structure-reactivity relationships for CO2 reduction at modified Cu surfaces. J Am Chem Soc. 2019;141(18):7355.

    CAS  Google Scholar 

  189. Wang ZJ, Wu LN, Sun K, Chen T, Jiang ZH, Cheng T, Goddard WA. Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J Phys Chem Lett. 2018;9(11):3057.

    CAS  Google Scholar 

  190. Xie MS, Xia BY, Li YW, Yan Y, Yang YH, Sun Q, Chan SH, Fisher A, Wang X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ Sci. 2016;9(5):1687.

    CAS  Google Scholar 

  191. Zhao Y, Wang CY, Liu YQ, MacFarlane DR, Wallace GG. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv Energy Mater. 2018;8(25):1801400.

    Google Scholar 

  192. Cao Z, Kim D, Hong DC, Yu Y, Xu J, Lin S, Wen XD, Nichols EM, Jeong K, Reimer JA, Yang PD, Chang CJ. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc. 2016;138(26):8120.

    CAS  Google Scholar 

  193. Fan ZX, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev. 2016;45(1):63.

    CAS  Google Scholar 

  194. Cheng HF, Yang NL, Lu QP, Zhang ZC, Zhang H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv Mater. 2018;30(26):1707189.

    Google Scholar 

  195. Chen Y, Lai ZC, Zhang X, Fan ZX, He QY, Tan CL, Zhang H. Phase engineering of nanomaterials. Nat Rev Chem. 2020;4(5):243.

    CAS  Google Scholar 

  196. Chen Y, Fan ZX, Wang J, Ling CY, Niu WX, Huang ZQ, Liu GG, Chen B, Lai ZC, Liu XZ, Li B, Zong Y, Gu L, Wang JL, Wang X, Zhang H. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J Am Chem Soc. 2020;142(29):12760.

    CAS  Google Scholar 

  197. Fan ZX, Bosman M, Huang ZQ, Chen Y, Ling CY, Wu L, Akimov YA, Laskowski R, Chen B, Ercius P, Zhang J, Qi XY, Goh MH, Ge YY, Zhang ZC, Niu WX, Wang JL, Zheng HM, Zhang H. Heterophase fcc-2H-fcc gold nanorods. Nat Commun. 2020;11(1):3293.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program (Nos.2017YFA0204503 and 2016YFB0401100) and the National Natural Science Foundation of China (Nos.91833306, 21875158, 51633006 and 51703159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CH., Nosheen, F. & Zhang, ZC. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 40, 1412–1430 (2021). https://doi.org/10.1007/s12598-020-01600-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01600-4

Keywords

Navigation