Skip to main content
Log in

Enhanced separation of Pd(II) and Pt(IV) from hydrochloric acid aqueous solution using 2-((2-methoxyethyl)thio)-1H-benzimidazole

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Separation of palladium (Pd) and platinum (Pt) by solvent extraction is difficult because of their extremely similar physicochemical properties. Development of new extractants with a high extraction efficiency and excellent separation selectivity is the primary focus for enhancing the separation of Pd and Pt by solvent extraction. In this study, a new extractant, 2-((2-methoxyethyl)thio)-1H-benzimidazole (MOBI), which contains N, S, and O atoms, was synthesized and used to separate Pd(II) and Pt(IV) from a hydrochloric acid aqueous solution. The experimental results revealed that Pd(II) and Pt(IV) were effectively separated under the optimal conditions: MOBI concentration of 0.005 mol·L−1, HCl concentration of 0.2 mol·L−1, organic/aqueous (O/A) phase ratio of 1.0, and contact time of 15 min. The separation coefficient between Pd(II) and Pt(IV) was 1246.40, which indicates that MOBI has a higher selectivity for Pd(II) than Pt(IV). In addition, the mechanism of coordination between Pd(II) and MOBI was demonstrated through the slope method, Fourier transform infrared spectroscopy (FTIR), hydrogen-1 nuclear magnetic resonance spectroscopy (1H NMR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The results revealed that MOBI could coordinate with Pd(II) via the N atom in the benzimidazole ring of MOBI molecules to form [Pd(MOBI)2Cl2](O).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun PP, Lee JY, Lee MS. Separation of platinum(IV) and rhodium(III) from acidic chloride solution by ion exchange with anion resins. Hydrometallurgy. 2012;113(2):200.

    Google Scholar 

  2. Xue DS, Li T, Liu YH, Yang YH, Zhang YX, Cui J, Guo DB. Selective adsorption and recovery of precious metal ions from water and metallurgical slag by polymer brush graphene–polyurethane composite. React Funct Polym. 2019;136(3):138.

    CAS  Google Scholar 

  3. Lü YC, Dai HX, Du WX, Zhang L, Tang DD. Progress in recovery of platinum and palladium from spent catalysts by hydrometallurgical methods. Chin J Rare Met. 2018;42(12):1323.

    Google Scholar 

  4. Matsumoto K, Yamakawa S, Sezaki Y, Katagiri H, Jikei M. Preferential precipitation and selective separation of Rh(III) from Pd(II) and Pt(IV) using 4-alkylanilines as precipitants. ACS Omega. 2019;4(1):1868.

    CAS  Google Scholar 

  5. Hoai Thanh T, Lee MS, Senanayake G. Separation of Pt(IV), Rh(III) and Fe(III) in acid chloride leach solutions of glass scraps by solvent extraction with various extractants. Hydrometallurgy. 2018;175(01):232.

    Google Scholar 

  6. Cieszynska A, Wisniewski M. Selective extraction of palladium(II) from hydrochloric acid solutions with phosphonium extractants. Sep Purif Technol. 2011;80(2):385.

    CAS  Google Scholar 

  7. Nguyen TH, Sonu CH, Lee MS. Separation of platinum(IV) and palladium(II) from concentrated hydrochloric acid solutions by mixtures of amines with neutral extractants. J Ind Eng Chem. 2015;32(12):238.

    CAS  Google Scholar 

  8. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.

    CAS  Google Scholar 

  9. Majidi B, Shemirani F. Solvent-based de-emulsification dispersive liquid–liquid microextraction of palladium in environmental samples and determination by electrothermal atomic absorption spectrometry. Talanta. 2012;93(5):245.

    CAS  Google Scholar 

  10. Pan L, Bao X, Gu G. Solvent Extraction of palladium(II) and effective separation of palladium(II) and platinum(IV) with synthetic sulfoxide MSO. J Min Metall B. 2013;49(1):57.

    CAS  Google Scholar 

  11. Garcia L, Torrent A, Antico E, Fontas C, Roglans A. Selective Pd(II) and Pt(IV) sorption using novel polymers containing azamacrocycle functional groups. React Funct Polym. 2008;68(6):1088.

    CAS  Google Scholar 

  12. Truong HT, Lee MS. Separation of Pd(II) and Pt(IV) from hydrochloric acid solutions by solvent extraction with Cyanex 301 and LIX 63. Miner Eng. 2018;115(1):13.

    CAS  Google Scholar 

  13. Nguyen TH, Sonu CH, Lee MS. Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy. 2016;164(9):71.

    CAS  Google Scholar 

  14. Xing WD, Lee MS. A process for the separation of noble metals from HCl liquor containing gold(III), palladium(II), platinum(IV), rhodium(III), and iridium(IV) by solvent extraction. Processes. 2019;7(5):243.

    CAS  Google Scholar 

  15. Fontas C, Hidalgo M, Salvado V. Adsorption and preconcentration of Pd(II), Pt(IV), and Rh(III) using anion-exchange solid-phase extraction cartridges (SPE). Solvent Extr Ion Exch. 2009;27(1):83.

    CAS  Google Scholar 

  16. Kononova ON, Melnikov AM, Borisova TV, Krylov AS. Simultaneous ion exchange recovery of platinum and rhodium from chloride solutions. Hydrometallurgy. 2011;105(3–4):341.

    CAS  Google Scholar 

  17. Nikoloski AN, Ang KL, Li D. Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins. Hydrometallurgy. 2015;152(02):20.

    CAS  Google Scholar 

  18. Xie F, Fan RY, Yi QP, Fan ZJ, Zhang QL, Luo ZR. Adsorption recovery of Pd(II) from aqueous solutions by persimmon residual based bio-sorbent. Hydrometallurgy. 2016;165(10):323.

    CAS  Google Scholar 

  19. Yi QP, Fan RY, Xie F, Min HY, Zhang QL, Luo ZR. Selective recovery of Au(III) and Pd(II) from waste PCBs using ethylenediamine modified persimmon tannin adsorbent. Proc Environ Sci. 2016;31(2):185.

    Google Scholar 

  20. Xu ZX, Zhao YL, Wang PY, Yan XQ, Cai MM, Yang Y. Extraction of Pt(IV), Pt(II), and Pd(II) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid. Ind Eng Chem Res. 2019;58(5):1779.

    CAS  Google Scholar 

  21. Mincke S, Asere TG, Verheye I, Folens K, Vanden Bussche F, Lapeire L, Verbeken K, Van Der Voort P, Tessema DA, Fufa F, Laing GD, Stevens CV. Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chem. 2019;21(9):2295.

    CAS  Google Scholar 

  22. Awual MR. Solid phase sensitive palladium(II) ions detection and recovery using ligand based efficient conjugate nanomaterials. Chem Eng J. 2016;300(9):264.

    CAS  Google Scholar 

  23. Tong Y, Wang C, Huang YX, Yang YZ. Extraction and stripping of platinum from hydrochloric acid medium by mixed imidazolium ionic liquids. Ind Eng Chem Res. 2015;54(2):705.

    CAS  Google Scholar 

  24. Suryavanshi VJ, Pawar RR, Anuse MA, Mulik GN. 2-octylaminopyridine assisted solvent extraction system for selective separation of palladium(II) ion-pair complex from synthetic mixtures and real samples. Anal Methods. 2015;7(6):2497.

    CAS  Google Scholar 

  25. Assuncao A, Matos A, Rosa da Costa AM, Candeias A, Costa MC. A bridge between liquid–liquid extraction and the use of bacterial communities for palladium and platinum recovery as nanosized metal sulphides. Hydrometallurgy. 2016;163(8):40.

    CAS  Google Scholar 

  26. Huang H, Huang C, Wu YX, Ding SD, Liu N, Su DP, Lv TH. Extraction of palladium(II) from nitric acid solutions with diglycolthioamide. Hydrometallurgy. 2015;156(7):6.

    CAS  Google Scholar 

  27. Côté B, Demopoulos GP. New 8-hydroxyquinoline derivative extractants for platinum group metals separation part 2: Pd(II) extraction equilibria and stripping. Solvent Extr Ion Exch. 1994;12(2):393.

    Google Scholar 

  28. Reddy BR, Raju B, Lee JY, Park HK. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336. J Hazard Mater. 2010;180(1–3):253.

    CAS  Google Scholar 

  29. Kubota F, Shigyo E, Yoshidai W, Goto M. Extraction and separation of Pt and Pd by an imidazolium-based ionic liquid combined with phosphonium chloride. Solvent Extr Res Dev, Jpn. 2017;24(2):97.

    Google Scholar 

  30. Cieszynska A, Wiśniewski M. Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos®IL 104. Hydrometallurgy. 2012;113–114(2):79.

    Google Scholar 

  31. Pan L, Zhang ZD. Solvent extraction and separation of palladium(II) and platinum(IV) from hydrochloric acid medium with dibutyl sulfoxide. Miner Eng. 2009;22(15):1271.

    CAS  Google Scholar 

  32. Zhu P, Gu GB, Qu ZP, Huang YF, Yao WX. The pilot test of Pt–Pd and Pt–Rh feeds extracted and separated with a new sulfoxide extractant. Rare Met. 2006;25(2):99.

    CAS  Google Scholar 

  33. Costa MC, Assunção A, Almeida R, da Costa AMR, Nogueira C, Paiva AP. N,N′-dimethyl-N,N′-dicyclohexylsuccinamide: a novel molecule for the separation and recovery of Pd(II) by liquid–liquid extraction. Sep Purif Technol. 2018;201(8):96.

    CAS  Google Scholar 

  34. Mowafy EA, Mohamed D, Alshammari A. Extraction and separation of selected platinum-group and base metal ions from nitric acid solutions using thiodiglycolamides (TDGA) as novel extractants. Sep Sci Technol. 2015;50(10):2352.

    CAS  Google Scholar 

  35. Cieszynska A, Wisniewski M. Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant. Sep Purif Technol. 2010;73(2):202.

    CAS  Google Scholar 

  36. Cieszynska A, Wieczorek D. Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy. 2018;175(1):359.

    CAS  Google Scholar 

  37. Martyna RP, Magdalena RR. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid–liquid extraction with phosphonium ionic liquids. Sep Purif Technol. 2019;212(4):791.

    Google Scholar 

  38. Narita H, Morisaku K, Tamura K, Tanaka M, Shiwaku H, Okamoto Y, Suzuki S, Yaita T. Extraction properties of palladium(II) in HCl solution with sulfide-containing monoamide compounds. Ind Eng Chem Res. 2014;53(9):3636.

    CAS  Google Scholar 

  39. Singh KK, Ruhela R, Das A, Kumar M, Singh AK, Hubli RC, Bajaj PN. Separation and recovery of palladium from spent automobile catalyst dissolver solution using dithiodiglycolamide encapsulated polymeric beads. J Environ Chem Eng. 2015;3(1):95.

    Google Scholar 

  40. Wang C, Lu WJ, Tong Y, Zheng Y, Yang YZ. The application of ionic liquid-based system in the extraction of palladium: synthesis, characterization and computer calculation of palladium complexes. RSC Adv. 2014;4(100):57009.

    CAS  Google Scholar 

  41. Feng SP, Huang ZJ, Li PW. Solvent extraction of palladium(II) with 2-ethylhexyl benzimidazole sulfide from hydrochloric acid media. Asian J Chem. 2011;23(6):2605.

    CAS  Google Scholar 

  42. Feng SP, Huang ZJ, Xie MJ. Solvent extraction of palladium(II) with 2-ethylhexyl benzothiazolyl sulfide. Asian J Chem. 2012;24(8):3557.

    CAS  Google Scholar 

  43. Matsumiya M, Song Y, Tsuchida Y, Sasaki Y. Separation of palladium by solvent extraction with methylamino-bis-N,N-dioctylacetamide and direct electrodeposition from loaded organic phase. Sep Purif Technol. 2020;234(3):115841.

    CAS  Google Scholar 

  44. Petrova YS, Pestov AV, Kapitanova EI, Usoltseva MK, Neudachina LK. High-selective recovery of palladium by the N-(2-sulfoethyl)chitosan-based sorbent from the Pt(IV)–Pd(II) binary solution in a fixed-bed column. Sep Purif Technol. 2019;213(12):78.

    CAS  Google Scholar 

  45. Wu SJ, Xie MJ, Zhang Q, Zhong LJ, Chen MH, Huang ZJ. Isopentyl-sulfide-impregnated nano-MnO2 for the selective sorption of Pd(II) from the leaching liquor of ores. Molecules. 2017;22(7):1117.

    Google Scholar 

  46. Gandhi MR, Yamada M, Kondo Y, Shibayama A, Hamada F. Rapid and selective extraction of Pd(II) ions using the SCS type pincer ligand 1,3-bis(dimethylthiocarbamoyloxy)benzene, and its Pd(II) extraction mechanism. RSC Adv. 2016;6(2):1243.

    CAS  Google Scholar 

  47. Turanov AN, Karandashev VК, Artyushin OI, Sharova EV, Genkina GK. Adsorption of palladium(II) from hydrochloric acid solutions using polymeric resins impregnated with novel N-substituted 2-(diphenylthiophosphoryl)acetamides. Sep Purif Technol. 2017;187(10):355.

    CAS  Google Scholar 

  48. Abdel Ghani NT, Mansour AM. Novel palladium(II) and platinum(II) complexes with 1H-benzimidazol-2-ylmethyl-N-(4-bromo-phenyl)-amine: structural studies and anticancer activity. Eur J Med Chem. 2012;47(1):399.

    CAS  Google Scholar 

  49. Zhang H, Wang C, Zheng Y, Wang SB, Liu ZH, Yang YZ. A 2-mercaptobenzothiazole-functionalized ionic liquid for selective extraction of Pd(II) from a hydrochloric acid medium. RSC Adv. 2016;6(67):63006.

    CAS  Google Scholar 

  50. Huang YX, Tong Y, Wang C, Tang K, Yang YZ. Solvent extraction of palladium(II) with newly synthesized asymmetric branched alkyl sulfoxides from hydrochloric acid. RSC Adv. 2015;5(81):66376.

    CAS  Google Scholar 

  51. Li YW, Gu GB, Liu HY, Sung HHY, Williams ID, Chang CK. A new iso-amyl benzothiazolyl sulfoxide as an extractant for palladium and the crystal structure of its palladium(II) complex. Molecules. 2005;10(8):912.

    CAS  Google Scholar 

  52. Yılmaz Baran N, Baran T, Menteş A, Karakışla M, Saçak M. Highly effective and recoverable Pd(II) catalyst immobilized on thermally stable Schiff base polymer containing phenol group: production, characterization and application in Suzuki coupling reactions. J Organomet Chem. 2018;866(7):87.

    Google Scholar 

  53. Ma L, Zhao ZY, Dong YM, Sun XQ. A synergistic extraction strategy by N-1888 SOPAA and Cyphos IL 104 for heavy rare earth elements separation. Sep Purif Technol. 2017;174(3):474.

    CAS  Google Scholar 

  54. Tong Y, Wang C, Li J, Yang YZ. Extraction mechanism, behavior and stripping of Pd(II) by pyridinium-based ionic liquid from hydrochloric acid medium. Hydrometallurgy. 2014;147–148(8):164.

    Google Scholar 

  55. Liu WH, Wang Q, Zheng Y, Wang SB, Yan Y, Yang YZ. Extraction behaviour and mechanism of Pt(IV) and Pd(II) by liquid–liquid extraction with an ionic liquid HBBIm Br. Dalton Trans. 2017;46(22):7210.

    CAS  Google Scholar 

  56. Ito M, Furuhashi A, Shimoi M. Crystal and molecular structures of bis[2-(2-benzoxazolyl)phenol-N]dichloropalladium(II). Polyhedron. 1997;16(11):1889.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51362012, 51662007, 51574213, and U1602273), the Yunnan Applied Basic Research Project (Nos. 2017FD157 and 2018FH001-049), and Yunnan Province Department of Education Fund (No. 2019J1183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, SP., Huang, K. Enhanced separation of Pd(II) and Pt(IV) from hydrochloric acid aqueous solution using 2-((2-methoxyethyl)thio)-1H-benzimidazole. Rare Met. 39, 1473–1482 (2020). https://doi.org/10.1007/s12598-020-01545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01545-8

Keywords

Navigation