Skip to main content

Advertisement

Log in

Oxide ancillary ligand-based europium β-diketonate complexes and their enhanced luminosity

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ternary materials of europium complex with 2,2,6,6-tetramethyl-3,5-heptanedione (tmhd) ligand and aqua ligand as ancillary ligands have been prepared and characterized for various optoelectronic characteristics. Reactions of hydrated complex [Eu(tmhd)3(H2O)2] proceeded with triphenylphosphine oxide (TPPO) and pyridine-N-oxide (PNO) ancillary ligands were studied to develop novel complexes. The prepared complexes show good thermal stability. A comparative investigation of prepared materials [Eu(tmhd)3(H2O)2], [Eu(tmhd)3(TPPO)2] and [Eu(tmhd)3(PNO)2] was conducted for their luminescent behaviors in order to obtain the role of ancillary ligand in the enhancement of illumination amount generated from europium (Eu3+) ion. Color coordinates of prepared ternary complexes such as [Eu(tmhd)3(H2O)2] with (x = 0.54, y = 0.32), [Eu(tmhd)3(TPPO)2] with (x = 0.56, y = 0.32) and [Eu(tmhd)3(PNO)2] with (x = 0.57, y = 0.33) indicated that these materials exhibited bright red emission in visible region spectrum. The complexes show a proficient energy transport pathway from the ligands to the innermost Eu3+ by means of an ancillary ligand-sensitized luminescence process. Interaction between the metal and ligand results in a distinguished effect on quantum efficiency (η) as well as on Judd–Ofelt intensity factor (Ω2) of the prepared materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Binnemans K. Lanthanide-based luminescent hybrid materials. Chem Rev. 2009;109(9):4283.

    Article  CAS  Google Scholar 

  2. Zheng K, Liu Z, Jiang Y, Guo P, Li H, Zeng C, Ng SW, Zhong S. Ultrahigh luminescence quantum yield lanthanide coordination polymer as a multifunctional sensor. Dalton Trans. 2018;47(48):17432.

    Article  CAS  Google Scholar 

  3. Kitagawa Y, Suzue F, Nakanishi T, Fushimi K, Hasegawa Y. A highly luminescent Eu(III) complex based on an electronically isolated aromatic ring system with ultralong lifetime. Dalton Trans. 2018;47(21):7327.

    Article  CAS  Google Scholar 

  4. Kitagawa Y, Ohno R, Nakanishi T, Fushimi K, Hasegawa Y. Solvent-dependent dual-luminescence properties of a europium complex with helical π-conjugated ligands. Photochem Photobiol Sci. 2017;16(5):683.

    Article  CAS  Google Scholar 

  5. He P, Wang H, Liu S, Hu W, Shi J, Wang G, Gong M. An efficient europium(III) organic complex as red phosphor applied in LED. Electrochem Soc. 2009;156(2):E46.

    Article  CAS  Google Scholar 

  6. Law GL, Wong KL, Tam HL, Cheah KW, Wong WT. White OLED with a single-component europium complex. Inorg Chem. 2009;48(22):10492.

    Article  CAS  Google Scholar 

  7. Wang QM, Ogawa K, Toma K, Tamiaki H. Smart pH sensitive luminescent hydrogel based on Eu(III) β-diketonate complex and its enhanced photostability. J Photochem Photobiol A. 2009;201(2–3):87.

    Article  CAS  Google Scholar 

  8. Dong H, Liu Y, Wang D, Zhang W, Ye Z, Wang G, Yuan J. Preparation of europium-quantum dots and europium-fluorescein composite nanoparticles available for ratiometric luminescent detection of metal ions. Nanotechnology. 2010;21(39):395504.

    Article  Google Scholar 

  9. Mukkala VM, Helenius M, Hemmilä I, Kankare J, Takalo H. Development of luminescent europium(III) and terbium(III) chelates of 2,2′:6′,2″-terpyridine derivatives for protein labeling. Chim Acta. 1993;76(3):1361.

    Article  CAS  Google Scholar 

  10. Hemmila I, Laitala V. Progress in lanthanides as luminescent probes. J Fluoresc. 2005;15(4):529.

    Article  CAS  Google Scholar 

  11. Mesquita ME, Nobre SS, Fernandes M, Ferreira RAS, Santos SCG, Rodrigues MO, Carlos LD, Bermudez VD. Highly luminescent di-ureasil hybrid doped with a Eu(III) complex including dipicolinate ligands. J Photochem Photobiol A. 2009;205(2–3):156.

    Article  CAS  Google Scholar 

  12. Werts MHV, Woudenberg RH, Emmerink PG, Gassel RV, Hofstraat JW, Verhoeven JW. A near-infrared luminescent label based on YbIII ions and its application in a fluoroimmunoassay. Angew Chem Int Ed. 2000;39(24):4542.

    Article  CAS  Google Scholar 

  13. Sabatini N, Guardigli M, Lehn JM. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev. 1993;123(102):201.

    Article  Google Scholar 

  14. Binnemans K. Rare-earth beta-diketonates. Handbook on the physics and chemistry of rare earths. Amsterdam: Elsevier; 2005. 107.

    Google Scholar 

  15. Irfanullah M, Iftikhar K. Hypersensitivity in the luminescence and 4f–4f absorption properties of mono- and dinuclear EuIII and ErIII complexes based on fluorinated β-diketone and diimine/bis-diimine ligands. J Fluoresc. 2011;21(1):81.

    Article  CAS  Google Scholar 

  16. Sato S, Wada M. Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earth β-diketone chelates. Bull Chem Soc Jpn. 1970;43(7):1955.

    Article  CAS  Google Scholar 

  17. Crosby GA, Whan RE, Alire RM. Intramolecular energy transfer in rare earth chelates role of the triplet state. J Chem Phys. 1961;34(3):743.

    Article  CAS  Google Scholar 

  18. Haynes AV, Drickamer HGJ. High pressure luminescence studies of energy transfer in rare earth chelates. Chem Phys. 1982;76(1):114.

    Google Scholar 

  19. Irfanullah M, Iftikhar K. New hetero-dilanthanide complexes containing Ln1(fod)3 and Ln2(fod)3 fragments (Ln=Pr–Nd; Nd–Sm; Eu–Tb and Ho–Er) linked by bis-diimine bridging ligand. Inorg Chem Commun. 2010;13(6):694.

    Article  CAS  Google Scholar 

  20. Bunzli JCG, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev. 2005;34(12):1048.

    Article  Google Scholar 

  21. Wang D, Pi Y, Zheng C, Fan L, Hu Y, Wei X. Preparation and photoluminescence of some europium(III) ternary complexes with β-diketone and nitrogen heterocyclic ligands. J Alloys Compd. 2013;574(1):54.

    CAS  Google Scholar 

  22. Wang D, Zheng C, Fan L, Zheng J, Wei X. Preparation and fluorescent properties of europium(III) complexes with β-diketone ligand and 2,2-dipyridine or 1,10-phenanthroline. J Synth Met. 2012;162(23):2063.

    Article  CAS  Google Scholar 

  23. Kumar MVV, Jamalaiah BC, Gopal KR, Reddy RR. Novel Eu3+-doped lead telluroborate glasses for red laser source applications. J Solid State Chem. 2011;184(8):2145.

    Article  Google Scholar 

  24. Raju BDP, Reddy CM. Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses. Opt Mater. 2012;34(8):1251.

    Article  Google Scholar 

  25. Smentek L, Kedziorski A. f ↔ f electric dipole transitions; old problems in a new light. J Alloys Compd. 2009;488(2):586.

    Article  CAS  Google Scholar 

  26. Wybourne BG, Kedziorski A. Magnetic dipole transitions in crystals: II. Perturbation approach. J Alloys Compd. 2008;451(1–2):18.

    Article  CAS  Google Scholar 

  27. Soares-Santos PCR, Nogueira HIS, Felix V, Drew MGB, Ferreira RAS, Carlos LD, Trindade T. Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chem Mater. 2003;15(1):100.

    Article  CAS  Google Scholar 

  28. De Sa GF, Malta OL, de Mello DC, Simas AM, Longo RL, Santa-Cruz PA, da Silva EF Jr. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev. 2000;196(1):165.

    Article  Google Scholar 

  29. Carlos LD, Messaddeq Y, Brito HF, Ferreira RAS, Bermudez VD, Ribeiro SJL. Full-color phosphors from europium(III)-based organosilicates. Adv Mater. 2000;12(8):594.

    Article  CAS  Google Scholar 

  30. Werts MHV, Jukes RTF, Verhoeven JW. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys. 2002;4(9):1542.

    Article  CAS  Google Scholar 

  31. Zhang X, Zhou L, Pang Q, Gong M. Photoluminescence and Judd–Ofelt analysis of red LiGd5P2O13:Eu3+ phosphors for white LEDs. RSC Adv. 2015;5(67):54622.

    Article  CAS  Google Scholar 

  32. Yakuphanoglu F, Arslan M. The fundamental absorption edge and optical constants of some charge transfer compounds. Opt Mater. 2004;27(9):29.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the program from the SERB-DST, New Delhi (No. EMR/2016/006,135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devender Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Bhagwan, S., Dalal, A. et al. Oxide ancillary ligand-based europium β-diketonate complexes and their enhanced luminosity. Rare Met. 40, 2873–2881 (2021). https://doi.org/10.1007/s12598-020-01543-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01543-w

Keywords

Navigation