Skip to main content
Log in

Improvement in irradiation resistance of FeCu alloy by pre-deformation through introduction of dense point defect sinks

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The irradiation resistance of pre-deformed FeCu alloy was studied using a 3 MeV Fe ion irradiation experiment at room temperature in comparison with that of the as-received sample. Nanoindentation and atom probe tomography (APT) were used to characterize the mechanical properties and solute distribution. The stress–strain curve obtained by nanoindentation shows that the yield strength (σ0.2) of the pre-deformed sample is unexpectedly reduced with an increase in the irradiation dose to five displacements per atom (dpa). We suggest that it results both from the decrease in the dislocation density and the suppression of defects during irradiation. APT shows that the nucleation of the Cu cluster is suppressed; however, its growth is promoted in the pre-deformed sample, resulting in the formation of sparse and coarse clusters at 1 dpa irradiation. These coarse Cu clusters were then unexpectedly refined to finer grains with an increase in the irradiation dose to 5 dpa. Theoretically, the improvement in the resistance to irradiation in the pre-deformed sample is attributed to the dense point-defect sinks, that is, the dislocations and grain boundaries introduced by pre-deformation. In addition, the contributions of the dislocations and grain boundaries to the sink strength are estimated for both the as-received and pre-deformed samples. The results indicate that dislocations, rather than grain boundaries, play a major role after deformation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Odette G, Lucas G. Embrittlement of nuclear reactor pressure vessels. JOM. 2001;53(7):18.

    Article  CAS  Google Scholar 

  2. Styman PD, Hyde JM, Parfitt D, Wilford K, Burke MG, English CA, Efsing P. Post-irradiation annealing of Ni–Mn–Si-enriched clusters in a neutron-irradiated RPV steel weld using Atom Probe Tomography. J Nucl Mater. 2015;459:127.

    Article  CAS  Google Scholar 

  3. Barhate VN, Agrawal KS, Patil VS, Mahajan AM. Post-deposition-annealed lanthanum-doped cerium oxide thin films: structural and electrical properties. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01380-x.

    Article  Google Scholar 

  4. Zhang T, Wang H, Li Z, Schut H, Zhang Z, He M, Sun Y. Positron annihilation investigation of embrittlement behavior in Chinese RPV steels after Fe-Ion irradiation. Acta Metall Sin. 2018;54(4):512.

    CAS  Google Scholar 

  5. Lee GG, Jin HH, Chang K, Kwon J. Atom probe tomography analysis of radiation-induced solute clustering in austenite stainless steels. Radiat Eff Defects Solids. 2018;173(7–8):694.

    Article  CAS  Google Scholar 

  6. Liu X, Miao Y, Li M, Kirk MA, Maloy SA, Stubbins JF. Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91. J Nucl Mater. 2017;490(1):305.

    Article  CAS  Google Scholar 

  7. Pascuet MI, Martínez E, Monnet G, Malerba L. Solute effects on edge dislocation pinning in complex alpha-Fe alloys. J Nucl Mater. 2017;494:311.

    Article  CAS  Google Scholar 

  8. Was GS. Fundamentals of Radiation Materials Science: Metals and Alloys. New York: Springer; 2016. 230.

    Google Scholar 

  9. Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science. 2010;327(5973):1631.

    Article  CAS  Google Scholar 

  10. Ackland G. Controlling radiation damage. Science. 2010;327(5973):1587.

    Article  CAS  Google Scholar 

  11. El-Atwani O, Esquivel E, Aydogan E, Martinez E, Baldwin JK, Li M, Uberuaga BP, Maloy SA. Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater. 2019;165:118.

    Article  CAS  Google Scholar 

  12. Shang Z, Fan C, Xue S, Ding J, Li J, Voisin T, Wang YM, Wang H, Zhang X. Response of solidification cellular structures in additively manufactured 316 stainless steel to heavy ion irradiation: an in situ study. Mater Res Lett. 2019;7(7):290.

    Article  CAS  Google Scholar 

  13. Song M, Wang M, Lou X, Rebak RB, Was GS. Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels. J Nucl Mater. 2019;513:33.

    Article  CAS  Google Scholar 

  14. Zhan ZJ, Li X, Cao HY. Design and properties of new Fe-Cu composites. Chin J Rare Met. 2020;2:153.

    Google Scholar 

  15. Lu Q, Su Q, Wang F, Zhang C, Lu Y, Nastasi M, Cui B. Influence of laser shock peening on irradiation defects in austenitic stainless steels. J Nucl Mater. 2017;489:203.

    Article  CAS  Google Scholar 

  16. Miller MK, Sokolov MA, Nanstad RK, Russell KF. APT characterization of high nickel RPV steels. J Nucl Mater. 2006;351(1–3):187.

    Article  CAS  Google Scholar 

  17. Miller MK, Russell KF, Sokolov MA, Nanstad RK. APT characterization of irradiated high nickel RPV steels. J Nucl Mater. 2007;361(2–3):248.

    Article  CAS  Google Scholar 

  18. Egeland GW, Valdez JA, Maloy SA, McClellan KJ, Sickafus KE, Bond GM. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption. J Nucl Mater. 2013;435(1–3):77.

    Article  CAS  Google Scholar 

  19. Williamson G, Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22.

    Article  CAS  Google Scholar 

  20. Renzetti RA, Sandim HRZ, Bolmaro RE, Suzuki PA, Möslang A. X-ray evaluation of dislocation density in ODS-Eurofer steel. Mater Sci Eng A. 2012;534:142.

    Article  CAS  Google Scholar 

  21. Ungár T, Dragomir I, Révész Á, Borbély A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J Appl Crystallogr. 1999;32(5):992.

    Article  Google Scholar 

  22. Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S. Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int. 2010;50(6):875.

    Article  CAS  Google Scholar 

  23. Odette G, Lombrozo P, Wullaert R. Relationship between irradiation hardening and embrittlement of pressure vessel steels. In: Effects of Radiation on Materials: 12th International Symposium Volume II. West Conshohocken: ASTM International; 1985, 840.

  24. Kalidindi SR, Pathak S. Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 2008;56(14):3523.

    Article  CAS  Google Scholar 

  25. Pathak S, Kalidindi SR, Klemenz C, Orlovskaya N. Analyzing indentation stress–strain response of LaGaO3 single crystals using spherical indenters. J Eur Ceram Soc. 2008;28(11):2213.

    Article  CAS  Google Scholar 

  26. Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965;3(1):47.

    Article  Google Scholar 

  27. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564.

    Article  CAS  Google Scholar 

  28. Donohue BR, Ambrus A, Kalidindi SR. Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater. 2012;60(9):3943.

    Article  CAS  Google Scholar 

  29. Pathak S, Kalidindi SR, Weaver JS, Wang Y, Doerner RP, Mara NA. Probing nanoscale damage gradients in ion-irradiated metals using spherical nanoindentation. Sci Rep. 2017;7(1):11918.

    Article  Google Scholar 

  30. Pathak S, Kalidindi SR. Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep. 2015;91:1.

    Article  Google Scholar 

  31. Taylor GI. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond Ser A Contain Pap Math Phys Charact. 1934;145(855):362.

    CAS  Google Scholar 

  32. Mansur LK. Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects. Philos Mag A. 1979;39(4):497.

    Article  CAS  Google Scholar 

  33. Heald PT, Speight MV. Steady-state irradiation creep. Philos Mag. 1974;29(5):1075.

    Article  CAS  Google Scholar 

  34. van Duysen JC, Meric de Bellefon G. 60th Anniversary of electricity production from light water reactors: historical review of the contribution of materials science to the safety of the pressure vessel. J Nucl Mater. 2017;484:209.

    Article  Google Scholar 

  35. Wolfer WG. The dislocation bias. J Comput Aided Mater Des. 2007;14(3):403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program (Nos. 2016YFB0700401 and 2017YFB0305304) and the Basic Research and Development Program (No. JCYJ20170307153239266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, QL., Xu, B. et al. Improvement in irradiation resistance of FeCu alloy by pre-deformation through introduction of dense point defect sinks. Rare Met. 40, 885–896 (2021). https://doi.org/10.1007/s12598-020-01539-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01539-6

Keywords

Navigation