Skip to main content
Log in

Quantifying the Glide Resistance to Dislocations in Proton-Irradiated FeCrAl Alloy

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The proton irradiation-induced hardening effect of dislocations in C35M FeCrAl alloy on glide resistance was quantified by in-situ micropillar compression testing in a scanning electron microscope (SEM). Irradiation tests with a proton energy of 2 MeV were conducted at room temperature, producing plateau damage of 0.01 and 0.1 displacement per atom (dpa), respectively, and generating high density of dislocation loops with fine size (<10 nm). Single-crystal micropillars were prepared with maximizing Schmid factor for a specific slip system while minimizing the others and then compressed to active one specific slip system to measure the critical resolve shear stress (CRSS) of {110}<111> and {112}<111> slip systems, respectively. The CRSS for these two slip systems increases with increasing irradiation dose. {112}<111> slip system shows larger hardening than {110}<111> slip system. Microstructure characterization after deformation indicates that the hardening effect originates from the pinning effect of irradiation-induced defects on moving dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.B. Rebak, K.A. Terrani, W.P. Gassmann, J.B. Williams, and K.L. Ledford, MRS Adv. 2, 1217 (2017).

    Article  Google Scholar 

  2. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, and L.L. Snead, J. Nucl. Mater. 467, 703. (2015).

    Article  Google Scholar 

  3. K.G. Field, M.N. Gussev, Y. Yamamoto, and L.L. Snead, J. Nucl. Mater. 454, 352. (2014).

    Article  Google Scholar 

  4. S.J. Zinkle, K.A. Terrani, and L.L. Snead, Curr. Opin. Solid State Mater. Sci. 20, 401. (2016).

    Article  Google Scholar 

  5. J.C. Haley, S.A. Briggs, P.D. Edmondson, K. Sridharan, S.G. Roberts, S. Lozano-Perez, and K.G. Field, Acta Mater. 136, 390. (2017).

    Article  Google Scholar 

  6. E. Aydogan, J.S. Weaver, S.A. Maloy, O. El-Atwani, Y.Q. Wang, and N.A. Mara, J. Nucl. Mater. 503, 250. (2018).

    Article  Google Scholar 

  7. K.G. Field, S.A. Briggs, P. Edmondson, X. Hu, K.C. Littrell, R. Howard, C.M. Parish and Y. Yamamoto, Oak Ridge (2015)

  8. K.G. Field, S.A. Briggs, K. Sridharan, Y. Yamamoto, and R.H. Howard, J. Nucl. Mater. 495, 20. (2017).

    Article  Google Scholar 

  9. P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Terrani, and K.G. Field, Scripta Mater. 116, 112. (2016).

    Article  Google Scholar 

  10. S.A. Briggs, P.D. Edmondson, K.C. Littrell, Y. Yamamoto, R.H. Howard, C.R. Daily, K.A. Terrani, K. Sridharan, and K.G. Field, Acta Mater. 129, 217. (2017).

    Article  Google Scholar 

  11. C. Du, F. Maresca, M.G.D. Geers, and J.P.M. Hoefnagels, Acta Mater. 146, 314. (2018).

    Article  Google Scholar 

  12. Z. Sun, Y. Yamamoto, and X. Chen, Mater. Sci. Eng. A 734, 93. (2018).

    Article  Google Scholar 

  13. Y. Cui, E. Aydogan, J.G. Gigax, Y. Wang, A. Misra, S.A. Maloy, and N. Li, Acta Mater. 202, 255. (2021).

    Article  Google Scholar 

  14. D. Terentyev, P. Grammatikopoulos, D.J. Bacon, and Y.N. Osetsky, Acta Mater. 56, 5034. (2008).

    Article  Google Scholar 

  15. S. Jumel, J.-C.V. Duysen, J. Ruste, and C. Domain, J. Nucl. Mater. 346, 79. (2005).

    Article  Google Scholar 

  16. D. Terentyev, G. Bonny, C. Domain, G. Monnet, and L. Malerba, J. Nucl. Mater. 442, 470. (2013).

    Article  Google Scholar 

  17. D. Terentyev, Y.N. Osetsky, and D.J. Bacon, Scripta Mater. 62, 697. (2010).

    Article  Google Scholar 

  18. G. Was, and R. Averback, Comprehensive Nuclear Materials (Elsevier, Amsterdam, 2012).

    Google Scholar 

  19. D. Xie, B. Wei, W. Wu, and J. Wang, Cryst. 10, 943. (2020).

    Article  Google Scholar 

  20. Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, and C.N. Tomé, Acta Mater. 135, 411. (2017).

    Article  Google Scholar 

  21. S. Xu, D. Xie, G. Liu, K. Ming, and J. Wang, Int. J. Plast. 132, 102770. (2020).

    Article  Google Scholar 

  22. C.P. Massey, D. Zhang, S.A. Briggs, P.D. Edmondson, Y. Yamamoto, M.N. Gussev, and K.G. Field, J. Nucl. Mater. 549, 152804. (2021).

    Article  Google Scholar 

  23. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys. Res. B 310, 75. (2013).

    Article  Google Scholar 

  24. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63. (2010).

    Article  Google Scholar 

  25. G. Nolze, and R. Hielscher, J. Appl. Crystallogr. 49, 1786. (2016).

    Article  Google Scholar 

  26. S.-W. Lee, S.M. Han, and W.D. Nix, Acta Mater. 57, 4404. (2009).

    Article  Google Scholar 

  27. I.N. Sneddon, Int. J. Eng. Sci. 3, 47. (1965).

    Article  Google Scholar 

  28. B. Yao, D.J. Edwards, and R.J. Kurtz, J. Nucl. Mater. 434, 402. (2013).

    Article  Google Scholar 

  29. K.G. Field, S.A. Briggs, K. Littrell, C.M. Parish and Y. Yamamoto, Database on Performance of Neutron Irradiated FeCrAl Alloys. No. ORNL/TM-2016/335. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR) (2016)

  30. A. Chartier, and M.C. Marinica, Acta Mater. 180, 141. (2019).

    Article  Google Scholar 

  31. B.A. Carter, D.B. Williams, C.B. Carter, and D.B. Williams, Transmission Electron Microscopy: A Textbook for Materials Science Diffraction. II (Springer, New York, 1996).

    Google Scholar 

  32. S. Xu, M. Gong, Y. Jiang, C. Schuman, J.-S. Lecomte, and J. Wang, Acta Mater. 152, 58. (2018).

    Article  Google Scholar 

  33. S. Xu, M. Gong, C. Schuman, J.-S. Lecomte, X. Xie, and J. Wang, Acta Mater. 132, 57. (2017).

    Article  Google Scholar 

  34. A.K. Seeger, On the theory of radiation damage and radiation hardening. Max-Planck-Inst, Technischen Hochschule, Stuttgart (1959)

  35. F. Bergner, C. Pareige, M. Hernández-Mayoral, L. Malerba, and C. Heintze, J. Nucl. Mater. 448, 96. (2014).

    Article  Google Scholar 

  36. D.J. Bacon, Y.N. Osetsky and D. Rodney, Dislocations in Solids, eds. J.P. Hirth and L. Kubin (Elsevier, 2009), pp 1-90

  37. Z. Wang, M. Yu, X. Long, C. Yang, N. Gao, Z. Yao, and X. Wang, Results Phys. 34, 105226. (2022).

    Article  Google Scholar 

  38. P. Grammatikopoulos, D.J. Bacon, and Y.N. Osetsky, Radiat. Eff. Defects Solids. 174, 329. (2019).

    Article  Google Scholar 

  39. H.T. Vo, A. Reichardt, D. Frazer, N. Bailey, P. Chou, and P. Hosemann, J. Nucl. Mater. 493, 336. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the Department of Energy (DOE) Office of Nuclear Energy and Nuclear Energy University Program through the NEUP Project 18-15703 under the Grant No. DE-NE0008787. The research was performed in the Nebraska Center for Materials and Nanoscience, supported by the National Science Foundation under Award ECCS: 1542182 and the Nebraska Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Xie, D., Wu, W. et al. Quantifying the Glide Resistance to Dislocations in Proton-Irradiated FeCrAl Alloy. JOM 74, 4035–4041 (2022). https://doi.org/10.1007/s11837-022-05350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05350-9

Navigation