Skip to main content
Log in

Room-temperature ionic conductivity of Ba, Y, Al co-doped Li7La3Zr2O12 solid electrolyte after sintering

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The Ba, Y and Al co-doped Li7La3Zr2O12 (LLZO) was prepared by the solid-state reaction method. Effect of sintering on the crystallographic structure, morphology, total conductivity, relative density and contractibility rate of the prepared solid electrolyte was studied, respectively. The sintered samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), electrochemical impedance spectra (EIS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) techniques, respectively. The cubic garnet phase Ba, Y and Al co-doped LLZO is obtained, and the room-temperature total conductivity of the Ba, Y and Al co-doped LLZO solid electrolyte is improved significantly by eliminating the grain boundary resistances and improving the densifications with controlling sintering temperature (T) and time (t), respectively. Sintering at 1160–1190 °C for 12 h and at 1190 °C for 6–15 h, respectively, the Ba, Y and Al co-doped LLZO solid electrolytes are cubic garnet phase. Sintering at 1180–1190 °C for 12 h and at 1190 °C for 12–18 h, respectively, SEM images of the cross section of the Ba, Y and Al co-doped LLZO solid electrolytes exhibit the distinctively flattened morphology without any noticeable grain boundaries. The total conductivity, relative density and contractibility rate of Li6.52La2.98Ba0.02Zr1.9Y0.1Al0.2O12 solid electrolyte are 2.96 × 10−4 S·cm−1, 94.19% and 18.61%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen XL, Wang T, Lu WZ, Cao TX, Zhang CM. Synthesis of Ta and Ca doped Li7La3Zr2O12 solid-state electrolyte via simple solution method and its application in suppressing shuttle effect of Li–S battery. J Alloy Compd. 2018;744:386.

    Article  CAS  Google Scholar 

  2. Koshikawa H, Matsuda S, Kamiya K, Miyayama M, Nakanishi S. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles. J Power Sour. 2018;376:147.

    Article  CAS  Google Scholar 

  3. Chen XL, Cao TX, Xue MZ, Lu H, Zhang CM. Improved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method. Solid State Ion. 2018;314:92.

    Article  CAS  Google Scholar 

  4. Zhao PC, Cao GP, Jin ZQ, Ming H, Zhang ST. Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12. Mater Des. 2018;139:65.

    Article  CAS  Google Scholar 

  5. Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C. Interphase engineering enabled all ceramic lithium battery. Joule. 2018;2:497.

    Article  CAS  Google Scholar 

  6. Zhang F, Shen F, Fan ZY, Ji X, Zhao B, Sun ZT, Xuan YY, Han XG. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Met. 2018;37(6):510.

    Article  CAS  Google Scholar 

  7. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  8. Yang XF, Han XG, Chen ZP, Zhou LH, Jiao WZ. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J Eur Ceram Soc. 2018;38:1673.

    Article  Google Scholar 

  9. Yang XF, Han XG, Chen ZP, Zhou LH, Jiao WZ. Fabrication of Li7La3Zr2O12 fibers using bio-mass template Kapok. Mater Lett. 2018;217:271.

    Article  CAS  Google Scholar 

  10. Ramakumar S, Deviannapoorani C, Dhivya L. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci. 2017;88:325.

    Article  CAS  Google Scholar 

  11. Emil H, Wojciech Z, Li L. On fabrication procedures of Li-ion conducting garnets. J Solid State Chem. 2017;248:51.

    Article  Google Scholar 

  12. Murugan R, Thangadurai V, Weppner W. A thermally conductive separator for stable Li metal anodes. Angew Chem Int Ed. 2007;46:7778.

    Article  CAS  Google Scholar 

  13. Kotobuki M, Song SF, Takahashi R. Improvement of Li ion conductivity of Li5La3Ta2O12 solid electrolyte by substitution of Ge for Ta. J Power Sour. 2017;349:105.

    Article  CAS  Google Scholar 

  14. Kokal I, Somer M, Notten PHL. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ion. 2011;185:42.

    Article  CAS  Google Scholar 

  15. Peng HJ, Feng LL, Li L. Synthesis of Li5+xLa3HfxNb2−x O12 (x = 0.2–1) ceramics with cubic garnet-type structure. Mate-rials Lett. 2017;194:138.

    Article  CAS  Google Scholar 

  16. Shao CY, Yu ZY, Liu HX. Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim Acta. 2017;225:345.

    Article  CAS  Google Scholar 

  17. Andriyevsky B, Doll K, Jacob T. Ab initio molecular dynamics study of lithium diffusion in tetragonal Li7La3Zr2O12. Mater Chem Phys. 2017;185:210.

    Article  CAS  Google Scholar 

  18. Rosenkiewitz N, Schuhmacher J, Bockmeyer M. Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO). J Power Sour. 2015;278:104.

    Article  CAS  Google Scholar 

  19. Deviannapoorani C, Ramakumar S, Din MMU. Phase transition, lithium ion conductivity and structural stability of tin substituted lithium garnets. RSC Adv. 2016;6:94706.

    Article  CAS  Google Scholar 

  20. Zhang Y, Cai J, Chen F, Tu R, Shen Q, Zhang XL, Zhan LM. Preparation of cubic Li7La3Zr2O12 solid electrolyte using a nano-sized core-shell structured precursor. J Alloy Compd. 2015;644:793.

    Article  CAS  Google Scholar 

  21. Li YQ, Wang Z, Cao Y, Du M, Chen C, Cui ZH, Guo XX. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim Acta. 2015;180:37.

    Article  CAS  Google Scholar 

  22. Allen JL, Wolfenstine J, Rangasamy E. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sour. 2012;206:315.

    Article  CAS  Google Scholar 

  23. Dhivya L, Karthik K, Ramakumar S. Facile synthesis of high lithium ion conductive cubic phase lithium garnets for electro-chemical energy storage devices. RSC Adv. 2015;5:96042.

    Article  CAS  Google Scholar 

  24. Jiang Y, Zhu X, Qin S. Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ion. 2017;300:73.

    Article  CAS  Google Scholar 

  25. Peng HJ, Feng LL, Li L. Synthesis of Li5+xLa3HfxNb2xO12 (x = 0.2–1) ceramics with cubic garnet-type structure. Mater Lett. 2017;194:138.

    Article  CAS  Google Scholar 

  26. Afyon S, Krumeich F, Rupp JLM. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J Mater Chem A. 2015;3:18636.

    Article  CAS  Google Scholar 

  27. Wang D, Zhong G, Dolotko O. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J Mater Chem A. 2014;2:20271.

    Article  CAS  Google Scholar 

  28. Liu XZ, Liu YZ, Chen J. Preparation and application of the LiBaLaZrREAlO solid electrolyte. China Patent. CN 2016106059169, 2016.

  29. Rangasamy E, Wolfenstine J, Sakamoto J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Solid State Ion. 2012;206:315.

    Article  Google Scholar 

  30. Rangasamy E, Wolfenstine J, Allen J. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. J Power Sour. 2013;230:261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51572176 and 51372153), the Plateau Discipline Construction Program from Shanghai Municipal Education Commission (No. 0817) and the Collaborative Innovation Fund of Shanghai Institute of Technology (No. XTCX2017-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XZ., Ding, L., Liu, YZ. et al. Room-temperature ionic conductivity of Ba, Y, Al co-doped Li7La3Zr2O12 solid electrolyte after sintering. Rare Met. 40, 2301–2306 (2021). https://doi.org/10.1007/s12598-020-01526-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01526-x

Keywords

Navigation