Skip to main content
Log in

Microstructure and properties of Inconel 625 + WC composite coatings prepared by laser cladding

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Inconel 625 + WC composite coatings were prepared on the surface of 2Cr13 steel by laser cladding. The microstructure, microhardness and corrosion resistance of the composite coatings with different WC contents were investigated in detail. The results show that the phase compositions of the composite coatings are mainly γ-(Ni, Fe) and various carbides. The content of WC has a significant effect on the microstructure of the cladding layers. When the WC content is 10 wt% and 15 wt%, the cladding layer has developed columnar dendrites. However, the 20 wt% WC coating is mainly composed of cellular dendrites and columnar dendrites. With the increase in WC content, the average hardness of the composite coating gradually increases. The average hardness of 20 wt% WC coating is the highest (HV1 536.98), which is a factor of 2.64 greater than that of the 2Cr13 steel matrix. Electrochemical results show that all the composite coatings have better corrosion resistance than 2Cr13 steel in 0.5 mol·L−1 HCl solution. The composite coating with 10 wt% WC has the best corrosion resistance, its corrosion potential (Ecorr) is 0.78806 V higher than that of 2Cr13 steel, and the corrosion current density (Icorr) is only 0.86% that of 2Cr13 steel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wen ZH, Bai Y, Yang JF, Huang J. Effect of vacuum re-melting on the solid particles erosion behavior of Ni60–NiCrMoY composite coatings prepared by plasma spraying. Vacuum. 2016;134:73.

    Article  CAS  Google Scholar 

  2. Mann BS, Arya V. HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades. Wear. 2003;254(7):652.

    Article  CAS  Google Scholar 

  3. Dong XC. A study on the corrosion and wearing of TRT blades. Metal Power. 2015;179(1):40.

    Google Scholar 

  4. Shitarev IL, Smelov VG, Sotov AV. Repair of a gas turbine blade tip by impulse laser build-up welding. Appl Mech Mater. 2014;682:96.

    Article  Google Scholar 

  5. Tian JJ, Yao SW, Luo XT, Li CX, Li CJ. An effective approach for creating metallurgical self-bonding in plasma-spraying of NiCr–Mo coating by designing shell–core-structured powders. Acta Mater. 2016;110:19.

    Article  CAS  Google Scholar 

  6. Jafari M, Enayati MH, Salehi M, Nahvr SM, Park CG. Microstructural and mechanical characterizations of a novel HVOF-sprayed WC–Co coating deposited from electroless Ni–P coated WC–12Co powders. Mater Sci Eng A. 2013;578:46.

    Article  CAS  Google Scholar 

  7. Shepeleva L, Medres B, Kaplan WD, Bamberger M, Weisheit A. Laser cladding of turbine blades. Surf Coat Technol. 2000;125(1):45.

    Article  CAS  Google Scholar 

  8. Calleja A, Tabernero I, Ealo JA, Campa FJ, Lamikiz A, Lacalle LN. Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding. Int J Adv Manuf Technol. 2014;74(9–12):1219.

    Article  Google Scholar 

  9. Brandt M, Sun S, Alam N, Bendeich P, Bishop A. Laser cladding repair of turbine blades in power plants: from research to commercialisation. Int Heat Treat Surf Eng. 2013;3(3):105.

    Article  Google Scholar 

  10. Özgün O, Gülsoy HO, Yilmaz R, Findik F. Microstructural and mechanical characterization of injection molded 718 superalloy powders. J Alloys Compd. 2013;576:140.

    Article  Google Scholar 

  11. Özgün O, Gülsoy HO, Findik F, Yilmaz R. Microstructure and mechanical properties of injection moulded Nimonic-90 superalloy parts. Powder Metall. 2012;55(5):413.

    Article  Google Scholar 

  12. Quadbeck P, Kaschta J, Singer RF. Superalloy IN625 with cellular microstructure-fabrication route and mechanical properties. Adv Eng Mater. 2004;6(8):635.

    Article  CAS  Google Scholar 

  13. Bao HS, Gong ZH, Chen ZZ, Yang G. Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 2020;39(6):716.

    Article  CAS  Google Scholar 

  14. Özgün O, Yilmaz R, Gülsoy HO, Findik F. The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts. Mater Charact. 2015;108:8.

    Article  Google Scholar 

  15. Niaz A, Khan S. A comprehensive pitting study of high velocity oxygen fuel Inconel 625 coating by using electrochemical testing techniques. J Mater Eng Perform. 2015;25(1):1.

    Google Scholar 

  16. Xu FJ, Lv YH, Liu YX, Shu FY, He P, Xu BS. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma loop deposition process. J Mater Sci Technol. 2013;29(5):480.

    Article  CAS  Google Scholar 

  17. Ahmed N, Voisey KT, Mccartney DG. Supplementary microstructural features induced during laser surface melting of thermally sprayed Inconel 625 coatings. J Them Spray Technol. 2014;23(3):402.

    Article  CAS  Google Scholar 

  18. Nurminen J, Näkki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int J Refract Met Hard. 2009;27(2):472.

    Article  CAS  Google Scholar 

  19. Przybyłowicz J, Kusiński J. Structure of laser cladded tungsten carbide composite coatings. J Mater Process Technol. 2001;109(1–2):154.

    Article  Google Scholar 

  20. Weng Z, Wang A, Wu X, Wang YY, Yang ZX. Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures. Surf Coat Technol. 2016;304:283.

    Article  CAS  Google Scholar 

  21. Wang KM, Lei YP, Wei SZ, Fu HG, Yang YW, Li YL, Su ZQ. Effect of WC content on microstructure and properties of laser cladding Ni-based WC composite coating. Trans Mater Heat Treat. 2016;37(7):172.

    Google Scholar 

  22. Zhou SF, Huang YJ, Zeng XY. Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding. Appl Surf Sci. 2009;255(20):8494.

    Article  CAS  Google Scholar 

  23. Yuan YL, Li ZG. Dissolving and precipitating characteristics of WC and carbides in the Ni60A + WC graded coating. J Mater Eng. 2013;11:12.

    Google Scholar 

  24. Shao JZ, Li J, Song R, Bai LL, Chen JL, Qu CC. Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti) matrix coating produced by laser cladding. Rare Met. 2020;39(3):304.

    Article  CAS  Google Scholar 

  25. Zhou SF, Huang YJ, Zeng XY, Hu QW. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding. Mater Sci Eng A. 2008;480(1–2):564.

    Article  Google Scholar 

  26. Zhong ML, Liu WJ, Yao KF, Goussain JC, Mayer C, Becker A. Microstructural evolution in high power laser cladding of Stellite 6 + WC layers. Surf Coat Technol. 2002;157(2–3):128.

    Article  CAS  Google Scholar 

  27. Rong L, Huang J, Li ZG, Li RF. Microstructure and property of laser cladding Ni − based alloy coating reinforced by WC particles. Chin Surf Eng. 2010;23(6):40.

    CAS  Google Scholar 

  28. Fesharaki MN, Reza SR, Mansouri HA, Jamali H. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods. Surf Coat Technol. 2018;353:25.

    Article  Google Scholar 

  29. Suarez S, Lasserre F, Mücklich F. Mechanical properties of MWNT/Ni bulk composites: influence of the microstructural refinement on the hardness. Mater Sci Eng A. 2013;587:381.

    Article  CAS  Google Scholar 

  30. Liu L, Li WW, Tang YP, Shen B, Hu WB. Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear. 2009;266(7):733.

    Article  CAS  Google Scholar 

  31. Jiang CP. The Microstructure and Properties of Fe-Based Amorphous Coatings Fabricated by Plasma Spraying. Xi’an: Chang’an University; 2015. 82.

    Google Scholar 

  32. Hu YB, Dong CF, Sun M, Xiao K, Zhong P, Li XG. Effects of solution pH and Cl on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments. Corros Sci. 2011;53(12):4159.

    Article  CAS  Google Scholar 

  33. Andreev YY. Adsorption equilibrium at the metal-oxide film interface in the oxidation reactions of Ni, Cr, and their alloys. Russ J Phys Chem A. 2007;81(6):967.

    Article  CAS  Google Scholar 

  34. Lei JB, Shi C, Zhou SF, Gu ZJ, Zhang LC. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding. Surf Coat Technol. 2018;334:274.

    Article  CAS  Google Scholar 

  35. Li F, Chen HY, Dong YH, Li XY, Dong LH, Yin YS. Corrosion behavior of Fe-based laser cladding coating in hydrochloric acid solutions. Acta Metal Sin. 2018;54(7):1019.

    Google Scholar 

  36. Atta AM, Allohedan HA, El-Mahdy GA, Ezzat ARO. Application of stabilized silver nanoparticles as thin films as corrosion inhibitors for carbon steel alloy in 1 M hydrochloric acid. J Nanomater. 2013;48:132.

    Google Scholar 

  37. Wu LF, Li T, Zhao HY, Sun MS, Fan J. Influence of Ce on corrosion resistance of 2A12 aluminum alloy in harsh marine atmospheric. Chin J Rare Met. 2019;43(12):1269.

    Google Scholar 

  38. Cao CN. Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press; 2008. 176.

    Google Scholar 

  39. Dai NW, Zhang LC, Zhang JX, Zhang X, Ni QZ, Chen Y, Wu ML, Yang C. Distinction in corrosion resistance of selective laser melted Ti–6Al–4 V alloy on different planes. Corros Sci. 2016;111:703.

    Article  CAS  Google Scholar 

  40. Wen ZH, Bai Y, Yang JF, Huang J. Corrosion resistance of vacuum re-melted Ni60–NiCrMoY alloy coatings. J Alloys Compd. 2017;711:659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2017MS(LH)0518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, ZH., Zhao, YT., Jiang, YJ. et al. Microstructure and properties of Inconel 625 + WC composite coatings prepared by laser cladding. Rare Met. 40, 2281–2291 (2021). https://doi.org/10.1007/s12598-020-01507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01507-0

Keywords

Navigation