Skip to main content

Advertisement

Log in

Recent developments on anode materials for magnesium-ion batteries: a review

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In recent years, there has been significant growth in the demand for secondary batteries, and researchers are increasingly taking an interest in the development of next-generation battery systems. Magnesium-ion batteries (MIBs) have been recognized as the optimal alternative to lithium-ion batteries (LIBs) due to their low cost, superior safety, and environment-friendliness. However, research and development on rechargeable MIBs are still underway as some serious problems need to be resolved. One of the most serious obstacles is the generation of an irreversible passivation layer on the surface of the Mg anode during cycling. In addition to exploring new electrolytes for MIBs, alternative anode materials for MIBs might be an effective solution to this issue. In this review, the composition and working principle of MIBs have been discussed. In addition, recent advances in the area of anode materials (metals and their alloys, metal oxides, and two-dimensional materials) available for MIBs and the corresponding Mg-storage mechanisms have also been summarized. Further, feasible strategies, including structural design, dimension reduction, and introduction of the second phase, have been employed to design high-performance MIB anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang H, Hasa I, Passerini S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater. 2018;8(17):1702582.

    Google Scholar 

  2. Liang X, Chen X, Zhao H, Yang Z, Wei F, Tu H. Preparation methods of nano-Ti02 electron transport layers and properties for perovskite solar cells. Chin J Rare Met. 2019;43(2):164.

    Google Scholar 

  3. Wu Z, Yang J, Yu B, Shi B, Zhao C, Yu Z. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    CAS  Google Scholar 

  4. Li X, Wang J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat. 2020;2(1):3.

    Google Scholar 

  5. Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester- based electrolytes for sodium-ion batteries. InfoMat. 2019;1(3):376.

    CAS  Google Scholar 

  6. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI. Prospects in anode materials for sodium ion batteries—a review. Renew Sustain Energy Rev. 2020;119:109549.

    CAS  Google Scholar 

  7. Vikström H, Davidsson S, Höök M. Lithium availability and future production outlooks. Appl Energy. 2013;110:252.

    Google Scholar 

  8. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci. 2017;10(5):1051.

    CAS  Google Scholar 

  9. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011.

    CAS  Google Scholar 

  10. Speirs J, Contestabile M, Houari Y, Gross R. The future of lithium availability for electric vehicle batteries. Renew Sustain Energy Rev. 2014;35:183.

    Google Scholar 

  11. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.

    CAS  Google Scholar 

  12. Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, Liu X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci. 2016;9(12):3570.

    CAS  Google Scholar 

  13. Emsley J. Nature’s Building Blocks: an AZ Guide to the Elements. Oxford: Oxford University Press; 2011. 699.

    Google Scholar 

  14. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Mg rechargeable batteries: an on-going challenge. Energy Environ Sci. 2013;6(8):2265.

    CAS  Google Scholar 

  15. Orikasa Y, Masese T, Koyama Y, Mori T, Hattori M, Yamamoto K, Okado T, Huang Z-D, Minato T, Tassel C. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep. 2014;4:5622.

    CAS  Google Scholar 

  16. Rashad M, Asif M, Wang Y, He Z, Ahmed I. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 2020;25:342.

    Google Scholar 

  17. Zhang Z, Dong S, Cui Z, Du A, Li G, Cui G. Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview. Small Methods. 2018;2(10):2366.

    Google Scholar 

  18. Bucur CB. Challenges of a Rechargeable Magnesium Battery: a Guide to the Viability of this Post Lithium-ion Battery. Cham: Springer; 2018. 11.

    Google Scholar 

  19. Matsui M. Study on electrochemically deposited Mg metal. J Power Sources. 2011;196(16):7048.

    CAS  Google Scholar 

  20. Kuang C, Zeng W, Li Y. A review of electrode for rechargeable magnesium ion batteries. J Nanosci Nanotechnol. 2019;19(1):12.

    CAS  Google Scholar 

  21. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype systems for rechargeable magnesium batteries. Nature. 2000;407(6805):724.

    CAS  Google Scholar 

  22. Levi E, Levi MD, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceramics. 2009;22(1):13.

    CAS  Google Scholar 

  23. Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D. The challenge of developing rechargeable magnesium batteries. MRS Bull. 2014;39(5):453.

    CAS  Google Scholar 

  24. Liu B, Luo T, Mu G, Wang X, Chen D, Shen G. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano. 2013;7(9):8051.

    CAS  Google Scholar 

  25. Choi SH, Kim JS, Woo SG, Cho W, Choi SY, Choi J, Lee KT, Park MS, Kim YJ. Role of Cu in Mo6S8 and Cu mixture cathodes for magnesium ion batteries. ACS Appl Mater Interfaces. 2015;7(12):7016.

    CAS  Google Scholar 

  26. Ichitsubo T, Yagi S, Nakamura R, Ichikawa Y, Okamoto S, Sugimura K, Kawaguchi T, Kitada A, Oishi M, Doi T. A new aspect of Chevrel compounds as positive electrodes for magnesium batteries. J Mater Chem A. 2014;2(36):14858.

    CAS  Google Scholar 

  27. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ. Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev. 2015;287:15.

    CAS  Google Scholar 

  28. Kim RH, Kim JS, Kim HJ, Chang WS, Han DW, Lee SS, Doo SG. Highly reduced VOx nanotube cathode materials with ultra-high capacity for magnesium ion batteries. J Mater Chem A. 2014;2(48):20636.

    CAS  Google Scholar 

  29. Levi E, Gofer Y, Aurbach D. On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem Mater. 2010;22(3):860.

    CAS  Google Scholar 

  30. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1.

    CAS  Google Scholar 

  31. Bucur CB, Gregory T, Oliver AG, Muldoon G. Confession of a magnesium battery. J Phys Chem Lett. 2015;6(18):3578.

    CAS  Google Scholar 

  32. Lu Z, Schechter A, Moshkovich M, Aurbach D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem. 1999;466(2):203.

    CAS  Google Scholar 

  33. Deivanayagam R, Ingram BJ, Shahbazian-Yassar R. Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 2019;21:136.

    Google Scholar 

  34. Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci. 2012;5(3):5941.

    CAS  Google Scholar 

  35. Zhang Z, Cui Z, Qiao L, Guan J, Xu H, Wang X, Hu P, Du H, Li S, Zhou X. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv Energy Mater. 2017;7(11):1602055.

    Google Scholar 

  36. Mohtadi R, Matsui M, Arthur TS, Hwang SJ. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed. 2012;51(39):9780.

    CAS  Google Scholar 

  37. Ha SY, Lee YW, Woo SW, Koo B, Kim JS, Cho J, Lee KT, Choi NS. Magnesium (II) bis (trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces. 2014;6(6):4063.

    CAS  Google Scholar 

  38. Song J, Sahadeo E, Noked M, Lee SB. Mapping the challenges of magnesium battery. J Phys Chem Lett. 2016;7(9):1736.

    CAS  Google Scholar 

  39. Niu J, Yin K, Gao H, Song M, Ma W, Peng Z, Zhang Z. Composition- and size-modulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries. Nanoscale. 2019;11(32):15279.

    CAS  Google Scholar 

  40. Arthur TS, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun. 2012;16(1):103.

    CAS  Google Scholar 

  41. Murgia F, Stievano L, Monconduit L, Berthelot R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J Mater Chem A. 2015;3(32):16478.

    CAS  Google Scholar 

  42. Liu Z, Lee J, Xiang G, Glass HF, Keyzer EN, Dutton SE, Grey CP. Insights into the electrochemical performances of Bi anodes for Mg ion batteries using 25Mg solid state NMR spectroscopy. Chem Commun. 2017;53(4):743.

    CAS  Google Scholar 

  43. Malik R, Burch D, Bazant M, Ceder G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010;10(10):4123.

    CAS  Google Scholar 

  44. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.

    CAS  Google Scholar 

  45. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.

    CAS  Google Scholar 

  46. Luo J, Maggard PA. Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3. Adv Mater. 2006;18(4):514.

    CAS  Google Scholar 

  47. Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung ST, Sun YK. Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater. 2010;22(28):3052.

    CAS  Google Scholar 

  48. Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu Z. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater. 2011;23(28):3155.

    CAS  Google Scholar 

  49. Darwiche A, Toiron M, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. J Power Sources. 2015;280:588.

    CAS  Google Scholar 

  50. Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H. Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces. 2015;7(12):6567.

    CAS  Google Scholar 

  51. González JR, Alcántara R, Nacimiento F, Ortiz GF, Tirado JL. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm. 2014;16(21):4602.

    Google Scholar 

  52. Shao Y, Gu M, Li X, Nie Z, Zuo P, Li G, Liu T, Xiao J, Cheng Y, Wang C. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014;14(1):255.

    CAS  Google Scholar 

  53. Kravchyk KV, Piveteau L, Caputo R, He M, Stadie NP, Bodnarchuk MI, Lechner RT, Kovalenko MV. Colloidal bismuth nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano. 2018;12(8):8297.

    CAS  Google Scholar 

  54. Tan YH, Yao WT, Zhang T, Ma T, Lu LL, Zhou F, Yao HB, Yu SH. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano. 2018;12(6):5856.

    CAS  Google Scholar 

  55. Penki TR, Valurouthu G, Shivakumara S, Sethuraman VA, Munichandraiah N. In situ synthesis of bismuth (Bi)/reduced graphene oxide (RGO) nanocomposites as high-capacity anode materials for a Mg-ion battery. New J Chem. 2018;42(8):5996.

    CAS  Google Scholar 

  56. Jung SC, Han YK. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode. J Phys Chem C. 2018;122(31):17643.

    CAS  Google Scholar 

  57. Hattori M, Yamamoto K, Matsui M, Nakanishi K, Mandai T, Choudhary A, Tateyama Y, Sodeyama K, Uchiyama T, Orikasa Y, Tamenori Y, Takeguchi T, Kanamura K, Uchimoto Y. Role of coordination structure of magnesium ions on charge and discharge behavior of magnesium alloy electrode. J Phys Chem C. 2018;122(44):25204.

    CAS  Google Scholar 

  58. Lee J, Monserrat B, Seymour ID, Liu Z, Dutton SE, Grey CP. An ab initio investigation on the electronic structure, defect energetics, and magnesium kinetics in Mg3Bi2. J Mater Chem A. 2018;6(35):16983.

    CAS  Google Scholar 

  59. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun (Camb). 2013;49(2):149.

    CAS  Google Scholar 

  60. Malyi OI, Tan TL, Manzhos S. In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn. J Power Sources. 2013;233:341.

    CAS  Google Scholar 

  61. Nguyen DT, Song SW. Magnesium stannide as a high-capacity anode for magnesium-ion batteries. J Power Sources. 2017;368:11.

    CAS  Google Scholar 

  62. Yaghoobnejad Asl H, Fu J, Kumar H, Welborn SS, Shenoy VB, Detsi E. In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured Sn for high performance Mg-ion battery anodes. Chem Mater. 2018;30(5):1815.

    CAS  Google Scholar 

  63. Rahman MM, Wang JZ, Hassan MF, Wexler D, Liu HK. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12–TiO2: a nanocomposite anode material for Li-ion batteries. Adv Energy Mater. 2011;1(2):212.

    CAS  Google Scholar 

  64. Wu Q, Xu J, Yang X, Lu F, He S, Yang J, Fan HJ, Wu M. Ultrathin anatase TiO2 nanosheets embedded with TiO2–B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries. Adv Energy Mater. 2015;5(7):1401756.

    Google Scholar 

  65. Chu C, Yang J, Zhang Q, Wang N, Niu F, Xu X, Yang J, Fan W, Qian Y. Biphase-interface enhanced sodium storage and accelerated charge transfer: flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl Mater Interfaces. 2017;9(50):43648.

    CAS  Google Scholar 

  66. Beaulieu LY, Larcher D, Dunlap RA, Dahn JR. Reaction of Li with grain-boundary atoms in nanostructured compounds. J Electrochem Soc. 2000;147(9):3206.

    CAS  Google Scholar 

  67. Parent LR, Cheng Y, Sushko PV, Shao Y, Liu J, Wang C-M, Browning ND. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn. Nano Lett. 2015;15(2):1177.

    CAS  Google Scholar 

  68. Cheng Y, Shao Y, Parent LR, Sushko ML, Li G, Sushko PV, Browning ND, Wang C, Liu J. Interface promoted reversible Mg insertion in nanostructured tin–antimony alloys. Adv Mater. 2015;27(42):6598.

    CAS  Google Scholar 

  69. Niu J, Gao H, Ma W, Luo F, Yin K, Peng Z, Zhang Z. Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Mater. 2018;14:351.

    Google Scholar 

  70. Giang Thi Huong N, Dan-Thien N, Song SW. Unveiling the roles of formation process in improving cycling performance of magnesium stannide composite anode for magnesium-ion batteries. Adv Mater Interfaces. 2018;5(22):1801039.

    Google Scholar 

  71. Periyapperuma K, Tran TT, Purcell MI, Obrovac MN. The reversible magnesiation of Pb. Electrochim Acta. 2015;165:162.

    CAS  Google Scholar 

  72. Murgia F, Monconduit L, Stievano L, Berthelot R. Electrochemical magnesiation of the intermetallic InBi through conversion-alloying mechanism. Electrochim Acta. 2016;209:730.

    CAS  Google Scholar 

  73. Murgia F, Laurencin D, Weldekidan ET, Stievano L, Monconduit L, Doublet ML, Berthelot R. Electrochemical Mg alloying properties along the Sb1−xBix solid solution. Electrochim Acta. 2018;259:276.

    CAS  Google Scholar 

  74. Blondeau L, Foy E, Khodja H, Gauthier M. Unexpected behavior of the InSb alloy in Mg-ion batteries: unlocking the reversibility of Sb. J Phys Chem C. 2018;123(2):1120.

    Google Scholar 

  75. Murgia F, Weldekidan ET, Stievano L, Monconduit L, Berthelot R. First investigation of indium-based electrode in Mg battery. Electrochem Commun. 2015;60:56.

    CAS  Google Scholar 

  76. Fu S, Ni J, Xu Y, Zhang Q, Li L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016;16(7):4544.

    CAS  Google Scholar 

  77. Chen C, Xu H, Zhou T, Guo Z, Chen L, Yan M, Mai L, Hu P, Cheng S, Huang Y. Integrated intercalation-based and interfacial sodium storage in graphene-wrapped porous Li4Ti5O0 nanofibers composite aerogel. Adv Energy Mater. 2016;6(13):1600322.

    Google Scholar 

  78. Subramanian V, Karki A, Gnanasekar K, Eddy FP, Rambabu B. Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources. 2006;159(1):186.

    CAS  Google Scholar 

  79. Wu N, Lyu YC, Xiao RJ, Yu X, Yin YX, Yang XQ, Li H, Gu L, Guo YG. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater. 2014;6(8):e120.

    CAS  Google Scholar 

  80. Wu N, Yin YX, Guo YG. Size-dependent electrochemical magnesium storage performance of spinel lithium titanate. Chem Asian J. 2014;9(8):2099.

    CAS  Google Scholar 

  81. Chen C, Wang J, Zhao Q, Wang Y, Chen J. Layered Na2Ti3O7/MgNaTi3O7/Mg0.5NaTi3O7 nanoribbons as high-performance anode of rechargeable Mg-ion batteries. ACS Energy Lett. 2016;1(6):1165.

    CAS  Google Scholar 

  82. Luo L, Zhen Y, Lu Y, Zhou K, Huang J, Huang Z, Mathur S, Hong Z. Structural evolution from layered Na2Ti3O7 to Na2Ti6O13 nanowires enabling a highly reversible anode for Mg-ion batteries. Nanoscale. 2020;12(1):230.

    CAS  Google Scholar 

  83. Li H, Liu X, Zhai T, Li D, Zhou H. Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv Energy Mater. 2013;3(4):428.

    CAS  Google Scholar 

  84. Liang Z, Lin Z, Zhao Y, Dong Y, Kuang Q, Lin X, Liu X, Yan D. New understanding of Li3VO4/C as potential anode for Li-ion batteries: preparation, structure characterization and lithium insertion mechanism. J Power Sources. 2015;274:345.

    CAS  Google Scholar 

  85. Zeng J, Yang Y, Li C, Li J, Huang J, Wang J, Zhao J. Li3VO4: an insertion anode material for magnesium ion batteries with high specific capacity. Electrochim Acta. 2017;247:265.

    CAS  Google Scholar 

  86. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok PH, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 Roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.

    CAS  Google Scholar 

  87. Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci. 2011;4(4):1113.

    CAS  Google Scholar 

  88. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015;347(6217): UNSP 1246501.

  89. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.

    CAS  Google Scholar 

  90. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225.

    CAS  Google Scholar 

  91. Datta D, Li J, Koratkar N, Shenoy VB. Enhanced lithiation in defective graphene. Carbon. 2014;80:305.

    CAS  Google Scholar 

  92. Er D, Detsi E, Kumar H, Shenoy VB. Defective graphene and graphene allotropes as high-capacity anode materials for Mg ion batteries. ACS Energy Lett. 2016;1(3):638.

    CAS  Google Scholar 

  93. Shomali E, Abdolhosseini Sarsari I, Tabatabaei F, Mosaferi M, Seriani N. Graphyne as the anode material of magnesium-ion batteries: ab initio study. Comput Mater Sci. 2019;163:315.

    CAS  Google Scholar 

  94. Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem. 2012;22(18):8911.

    CAS  Google Scholar 

  95. Zhang J, Liu G, Hu H, Wu L, Wang Q, Xin X, Li S, Lu P. Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries. Appl Surf Sci. 2019;487:1026.

    CAS  Google Scholar 

  96. Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gomez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev. 2018;47(3):982.

    CAS  Google Scholar 

  97. Jin W, Wang Z, Fu YQ. Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J Mater Sci. 2016;51(15):7355.

    CAS  Google Scholar 

  98. Sibari A, Marjaoui A, Lakhal M, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O. Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol Energy Mater Sol Cells. 2018;180:253.

    CAS  Google Scholar 

  99. Han X, Liu C, Sun J, Sendek AD, Yang W. Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv. 2018;8(13):7196.

    CAS  Google Scholar 

  100. Benzidi H, Lakhal M, Garara M, Abdellaoui M, Benyoussef A, El Kenz A, Mounkachi O. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory. Phys Chem Chem Phys. 2019;21(36):19951.

    CAS  Google Scholar 

  101. Ye XJ, Zhu GL, Liu J, Liu CS, Yan XH. Monolayer, bilayer, and heterostructure arsenene as potential anode materials for magnesium-ion batteries: a first-principles study. J Phys Chem C. 2019;123(25):15777.

    CAS  Google Scholar 

  102. Wei XL, Zhang H, Guo GC, Li XB, Lau WM, Liu LM. Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2. J Mater Chem A. 2014;2(7):2101.

    CAS  Google Scholar 

  103. Vakili-Nezhaad GR, Gujarathi AM, Al Rawahi N, Mohammadi M. Performance of WS2 monolayers as a new family of anode materials for metal-ion (Mg, Al and Ca) batteries. Mater Chem Phys. 2019;230:114.

    CAS  Google Scholar 

  104. Shafique A, Shin YH. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2. Phys Chem Chem Phys. 2017;19(47):32072.

    CAS  Google Scholar 

  105. Lu AY, Zhu H, Xiao J, Chuu CP, Han Y, Chiu MH, Cheng CC, Yang CW, Wei KH, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller DA, Chou MY, Zhang X, Li LJ. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol. 2017;12(8):744.

    CAS  Google Scholar 

  106. Chen W, Qu Y, Yao L, Hou X, Shi X, Pan H. Electronic, magnetic, catalytic, and electrochemical properties of two-dimensional Janus transition metal chalcogenides. J Mater Chem A. 2018;6(17):8021.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYS19034), the Fundamental Research Funds for the Central Universities (No. 2019CDJGFCL001), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K201800101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zeng or Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Zeng, W., Liu, SL. et al. Recent developments on anode materials for magnesium-ion batteries: a review. Rare Met. 40, 290–308 (2021). https://doi.org/10.1007/s12598-020-01493-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01493-3

Keywords

Navigation