Skip to main content

Advertisement

Log in

Magnesium-sulfur battery: its beginning and recent progress

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Rechargeable magnesium (Mg) battery has been considered as a promising candidate for future battery generations because of its potential high-energy density, its safety features and low cost. The challenges lying ahead for the realization of Mg battery in general are to develop proper electrolytes fulfilling a multitude of requirements and to discover cathode materials enabling high-energy Mg batteries. The combination of Mg anode with a sulfur cathode is one of the promising electrochemical couples due to its advantages of safety, low costs, and a high theoretical energy density of over 3200 Wh/L. However, the research on magnesium-sulfur (Mg-S) battery is just at its beginning and the development of suitable electrolytes has been the key challenge for further improvement, and, thus, in the focus of recent research. In this review, we highlight the recent progress achieved in Mg electrolytes and Mg-S batteries and discuss the major technical issues, which must be resolved for the improvement of Mg-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Table I

Similar content being viewed by others

References

  1. A. Manthiram: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176 (2011).

    CAS  Google Scholar 

  2. N.S. Choi, Z. Chen, S.A. Freunberger, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, and P.G. Bruce: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994 (2012).

    CAS  Google Scholar 

  3. H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach: On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 17, 110 (2014).

    CAS  Google Scholar 

  4. C. Hamilton: Cobalt set to shine in metals markets in 2017. https://www.ft.com/content/e8ce859a-ff59-11e6-8d8e-a5e3738f9ae4.

    Google Scholar 

  5. T.D. Gregory, R.J. Hoffman, and R.C. Winterton: Applications to energy storage nonaqueous electrochemistry of magnesium. J. Electrochem. Soc. 137, 775 (1990).

    CAS  Google Scholar 

  6. D. Aurbach, Y. Cohen, and M. Meshkovich: The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Solid State Lett. 4, A113 (2001).

    CAS  Google Scholar 

  7. M. Jöckle and A. Groß: Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).

    Google Scholar 

  8. H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013).

    CAS  Google Scholar 

  9. P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, and P.N. Kumta: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1 (2014).

    CAS  Google Scholar 

  10. R. Mohtadi and F. Mizuno: Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291 (2014).

    Google Scholar 

  11. M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi: Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15 (2015).

    CAS  Google Scholar 

  12. J. Muldoon, C.B. Bucur, and T. Gregory: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683 (2014).

    CAS  Google Scholar 

  13. C.B. Bucur, T. Gregory, A.G. Oliver, and J. Muldoon: Confession of a magnesium battery. J. Phys. Chem. Lett. 6, 3578 (2015).

    CAS  Google Scholar 

  14. J. Song, E. Sahadeo, M. Noked, and S.B. Lee: Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 7, 1736 (2016).

    CAS  Google Scholar 

  15. P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu, K.G. Gallagher, K.A. Persson, and G. Ceder: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287 (2017).

    CAS  Google Scholar 

  16. A. Manthiram, Y. Fu, S. Chung, C. Zu, and Y. Su: Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751 (2014).

    CAS  Google Scholar 

  17. Z.W. Seh, Y. Sun, Q. Zhang, and Y. Cui: Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605 (2016).

    CAS  Google Scholar 

  18. J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek, and Y. Kotani: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941 (2012).

    CAS  Google Scholar 

  19. O. Tutusaus and R. Mohtadi: Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem 2, 51 (2015).

    CAS  Google Scholar 

  20. E.M. Erickson, E. Markevich, G. Salitra, D. Sharon, D. Hirshberg, E. de la Llave, I. Shterenberg, A. Rozenman, and A. Frimer: Review-development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 162, A2424 (2015).

    CAS  Google Scholar 

  21. Z. Lu, A. Schechter, M. Moshkovich, and D. Aurbach: On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203 (1999).

    CAS  Google Scholar 

  22. D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, and M. Brunelli: Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260 (2007).

    CAS  Google Scholar 

  23. Y. Vestfried, O. Chusid, Y. Goffer, P. Aped, and D. Aurbach: Structural analysis of electrolyte solutions comprising magnesium-aluminate chloro-organic complexes by Raman spectroscopy. Organometallics 26, 3130 (2007).

    CAS  Google Scholar 

  24. N. Pour, Y. Gofer, D.T. Major, and D. Aurbach: Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 133, 6270 (2011).

    CAS  Google Scholar 

  25. Y. Guo, F. Zhang, J. Yang, F. Wang, Y.N. Li, and S. Hirano: Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ. Sci. 5, 9100 (2012).

    CAS  Google Scholar 

  26. E.G. Nelson, S.I. Brody, J.W. Kampf, and B.M. Bartlett: A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A 2, 18194 (2014).

    CAS  Google Scholar 

  27. C. Liebenow, Z. Yang, and P. Lobitz: The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates. Electrochem. Commun. 2, 641 (2000).

    CAS  Google Scholar 

  28. H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, and J. Muldoon: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).

    Google Scholar 

  29. Z. Zhao-Karger, X. Zhao, O. Fuhr, and M. Fichtner: Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv. 3, 16330 (2013).

    CAS  Google Scholar 

  30. W. Seidel: Synthese von mesitylaluminium-verbindungen. Z. anorg. Allg. Chem. 524, 101 (1985).

    CAS  Google Scholar 

  31. C.B. Minella, P. Gao, Z. Zhao-Karger, X. Mu, T. Diemant, M. Pfeifer, V.S.K. Chakravadhanula, R.J. Behm, and M. Fichtner: Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries. ChemElectroChem 4, 738 (2017).

    CAS  Google Scholar 

  32. Z. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R.J. Behm, and M. Fichtner: Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5, 1 (2015).

    Google Scholar 

  33. T. Gao, M. Noked, A.J. Pearse, E. Gillette, X. Fan, Y. Zhu, C. Luo, L. Suo, and M.A. Schroeder: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137, 12388 (2015).

    CAS  Google Scholar 

  34. B.P. Vinayan, Z. Zhao-Karger, T. Diemant, V.S.K. Chakravadhanula, N.I. Schwarzburger, M.A. Cambaz, R.J. Behm, C. Kübel, and M. Fichtner: Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale 8, 3296 (2016).

    CAS  Google Scholar 

  35. X. Yu and A. Manthiram: Performance enhancement and mechanistic studies of magnesium-sulfur cells with an advanced cathode structure. ACS Energy Lett. 1, 431 (2016).

    CAS  Google Scholar 

  36. Z. Zhao-Karger, X.M. Lin, C. Bonatto Minella, D. Wang, T. Diemant, R.J. Behm, and M. Fichtner: Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries. J. Power Sources 323, 213 (2016).

    CAS  Google Scholar 

  37. H. Tian, T. Gao, X. Li, X. Wang, C. Luo, X. Fan, C. Yang, L. Suo, and Z. Ma: High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).

    CAS  Google Scholar 

  38. F. Wang, Y. Guo, J. Yang, Y. Nuli, and S. Hirano: A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem. Commun. 48, 10763 (2012).

    CAS  Google Scholar 

  39. E.G. Nelson, J.W. Kampf, and B.M. Bartlett: Enhanced oxidative stability of non-Grignard magnesium electrolytes through ligand modification. Chem. Commun. 50, 5193 (2014).

    CAS  Google Scholar 

  40. A.J. Crowe and B.M. Bartlett: Influence of steric bulk on the oxidative stability of phenolate-based magnesium-ion battery electrolytes. J. Mater. Chem. A 4, 368 (2016).

    CAS  Google Scholar 

  41. A.J. Crowe, K.K. Stringham, and B.M. Bartlett: Fluorinated alkoxide-based magnesium-ion battery electrolytes that demonstrate Li-ion-battery-like high anodic stability and solution conductivity. ACS Appl. Mater. Interfaces 8, 23060 (2016).

    CAS  Google Scholar 

  42. J.T. Herb, C. Nist-Lund, J. Schwartz, and C.B. Arnold: Structural effects of magnesium dialkoxides as precursors for magnesium-ion electrolytes. ECS Electrochem. Lett. 4, A49 (2015).

    CAS  Google Scholar 

  43. J.T. Herb, C.A. Nist-Lund, and C.B. Arnold: A fluorinated dialkoxide-based magnesium-ion electrolyte. J. Mater. Chem. A 17, 7801 (2017).

    Google Scholar 

  44. S. He, K.V. Nielson, J. Luo, and T.L. Liu: Recent advances on MgCl2 based electrolytes for rechargeable Mg batteries. Energy Storage Mater. 8, 184 (2016).

    Google Scholar 

  45. Z. Rappoport and I. Marek, The Chemistry of Organomagnesium Compounds (John Wiley & Sons Ltd, Chichester, West Sussex, 2008).

    Google Scholar 

  46. Y. Viestfrid, M.D. Levi, Y. Gofer, and D. Aurbach: Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium. J. Electroanal. Chem. 576, 183 (2005).

    CAS  Google Scholar 

  47. R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, and D. Aurbach: Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243 (2014).

    CAS  Google Scholar 

  48. C.J. Barile, E.C. Barile, K.R. Zavadil, R.G. Nuzzo, and A.A. Gewirth: Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition. J. Phys. Chem. C 118, 27623 (2014).

    CAS  Google Scholar 

  49. C.J. Barile, R.G. Nuzzo, and A.A. Gewirth: Exploring salt and solvent effects in chloride-based electrolytes for magnesium electrodeposition and dissolution. J. Phys. Chem. C 119, 13524 (2015).

    CAS  Google Scholar 

  50. K.A. See, K.W. Chapman, L. Zhu, K.M. Wiaderek, O.J. Borkiewicz, C.J. Barile, P.J. Chupas, and A.A. Gewirth: The interplay of Al and Mg speciation in advanced Mg battery electrolyte solutions. J. Am. Chem. Soc. 138, 328 (2016).

    CAS  Google Scholar 

  51. I. Shterenberg, M. Salama, Y. Gofer, E. Levi, and D. Aurbach: The challenge of developing rechargeable magnesium batteries. MRS Bull. 39, 453 (2014).

    CAS  Google Scholar 

  52. S. He, J. Luo, and T.L. Liu: MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: electrochemical conditioning or not? J. Mater. Chem. A 5, 12718 (2017).

    CAS  Google Scholar 

  53. W. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, and Y. Xu: Synthesis, crystal structure, and electrochemical properties of a simple magnesium electrolyte for magnesium/sulfur batteries. Angew. Chem. Int. Ed. 55, 6406 (2016).

    CAS  Google Scholar 

  54. J. Luo, S. He, and T.L. Liu: Tertiary Mg/MgCl2/AlCl3 inorganic Mg2+ electrolytes with unprecedented electrochemical performance for reversible Mg deposition. ACS Energy Lett. 2, 1197 (2017).

    CAS  Google Scholar 

  55. M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, and H. Dai: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015).

    CAS  Google Scholar 

  56. T. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, and C. Wang: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2, 3430 (2014).

    CAS  Google Scholar 

  57. Z. Zhao-Karger, J.E. Mueller, X. Zhao, O. Fuhr, T. Jacob, and M. Fichtner: Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Adv. 4, 26924 (2014).

    CAS  Google Scholar 

  58. E.D. Robert, H.L. George, E.J. Robert, and H. Jaehee: High voltage rechargeable magnesium batteries having a non-aqueous electrolyte. US Pat. Appl. Publ. US 2013/0252112 A1 (2014).

    Google Scholar 

  59. I. Shterenberga, M. Salamaa, H.D. Yoob, Y. Gofera, J.-B. Parkc, Y.-K. Sunc, and D. Aurbach: Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, A7118 (2015).

    Google Scholar 

  60. N. Sa, B. Pan, A. Saha-Shah, A.A. Hubaud, J.T. Vaughey, L.A. Baker, C. Liao, and A.K. Burrell: Role of chloride for a simple, non-grignard Mg electrolyte in ether-based solvents. ACS Appl. Mater. Interfaces 8, 16002 (2016).

    CAS  Google Scholar 

  61. C. Liao, N. Sa, B. Key, A.K. Burrell, L. Cheng, L.A. Curtiss, J.T. Vaughey, J.-J. Woo, and L. Hu: The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A 3, 6082 (2015).

    CAS  Google Scholar 

  62. B. Pan, J. Huang, M. He, S.M. Brombosz, J.T. Vaughey, L. Zhang, A.K. Burrell, Z. Zhang, and C. Liao: The role of MgCl2 as a Lewis base in ROMgCl-MgCl2 electrolytes for magnesium-ion batteries. ChemSusChem 9, 595 (2016).

    CAS  Google Scholar 

  63. S.J. Kang, S.C. Lim, H. Kim, J.W. Heo, S. Hwang, M. Jang, D. Yang, S.T. Hong, and H. Lee: Non-grignard and Lewis acid-free sulfone electrolytes for rechargeable magnesium batteries. Chem. Mater. 29, 3174 (2017).

    CAS  Google Scholar 

  64. S. Yagi, A. Tanaka, Y. Ichikawa, T. Ichitsubo, and E. Matsubara: Electrochemical stability of magnesium battery current collectors in a Grignard reagent-based electrolyte. J. Electrochem. Soc. 160, C83 (2013).

    CAS  Google Scholar 

  65. C. Wall, Z. Zhao-Karger, and M. Fichtner: Corrosion resistance of current collector materials in Bisamide based electrolyte for magnesium batteries. ECS Electrochem. Lett. 4, C8 (2014).

    Google Scholar 

  66. R. Mohtadi, M. Matsui, T.S. Arthur, and S.J. Hwang: Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51, 9780 (2012).

    CAS  Google Scholar 

  67. M. Kar, Z. Ma, L.M. Azofra, K. Chen, M. Forsyth, and D.R. MacFarlane: Ionic liquid electrolytes for reversible magnesium electrochemistry. Chem. Commun. 52, 4033 (2016).

    CAS  Google Scholar 

  68. T. Watkins, A. Kumar, and D.A. Buttry: Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. J. Am. Chem. Soc. 138, 641 (2016).

    CAS  Google Scholar 

  69. J. Muldoon, C.B. Bucur, A.G. Oliver, J. Zajicek, G.D. Allred, and W.C. Boggess: Corrosion of magnesium electrolytes: chlorides-the culprit. Energy Environ. Sci. 6, 482 (2013).

    CAS  Google Scholar 

  70. S.Y. Ha, Y.W. Lee, S.W. Woo, B. Koo, J.S. Kim, J. Cho, K.T. Lee, and N.S. Choi: Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 6, 4063 (2014).

    CAS  Google Scholar 

  71. Z. Ma, M. Kar, C. Xiao, M. Forsyth, and D.R. MacFarlane: Electrochemical cycling of Mg in Mg[TFSI]2/tetraglyme electrolytes. Electrochem. Commun. 78, 29 (2017).

    CAS  Google Scholar 

  72. O. Tutusaus, R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, and Y.V. Sevryugina: An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. 54, 7900 (2015).

    CAS  Google Scholar 

  73. O. Tutusaus, R. Mohtadi, N. Singh, T.S. Arthur, and F. Mizuno: Study of electrochemical phenomena observed at the Mg metal/electrolyte interface. ACS Energy Lett. 2, 224 (2016).

    Google Scholar 

  74. S.G. McArthur, L. Geng, J. Guo, and V. Lavallo: Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries. Inorg. Chem. Front. 2, 1101 (2015).

    CAS  Google Scholar 

  75. S. McArthur, R. Jay, L. Geng, J. Guo, and V. Lavallo: Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries. Chem. Commun. 53, 4453 (2017).

    CAS  Google Scholar 

  76. E.N. Keyzer, H.F.J. Glass, Z. Liu, P.M. Bayley, S.E. Dutton, C.P. Grey, and D.S. Wright: Mg(PF6)2-based electrolyte systems: understanding electrolyte-electrode interactions for the development of Mg-ion batteries. J. Am. Chem. Soc. 138, 8682 (2016).

    CAS  Google Scholar 

  77. R. Schwarz, M. Pejic, P. Fischer, M. Marinaro, L. Jörissen, and M. Wachtler: Magnesocene-based electrolytes: a new class of electrolytes for magnesium batteries. Angew. Chem. Int. Ed. 55, 14958 (2016).

    CAS  Google Scholar 

  78. J.T. Herb, C.A. Nist-Lund, and C.B. Arnold: A fluorinated alkoxyaluminate electrolyte for magnesium-ion batteries. ACS Energy Lett. 1, 1227 (2016).

    CAS  Google Scholar 

  79. Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu, X. Wang, P. Hu, H. Du, and S. Li: Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater. 7, 1602055 (2017).

    Google Scholar 

  80. I. Krossing and I. Raabe: Noncoordinating anions-fact or fiction? A survey of likely candidates. Angew. Chem. Int. Ed. 43, 2066 (2004).

    CAS  Google Scholar 

  81. Z. Zhao-Karger, E.G. Bardaji, O. Fuhr, and M. Fichtner: New class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 5, 10815 (2017).

    CAS  Google Scholar 

  82. J.M. Lalancette, A. Freche, J.R. Brindle, and M. Laliberte: Reductions of functional groups with sulfurated borohydrides. Application to steroidal ketones. Synthesis 10, 526 (1972).

    Google Scholar 

  83. K. Itaoka, I.T. Kim, K. Yamabuki, N. Yoshimoto, and H. Tsutsumi: Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit. J. Power Sources 297, 323 (2015).

    CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by the “MagS” project (grant no. 03XP0032A) from the Federal Ministry of Education and Research (BMBF) of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fichtner Maximilian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirong, ZK., Maximilian, F. Magnesium-sulfur battery: its beginning and recent progress. MRS Communications 7, 770–784 (2017). https://doi.org/10.1557/mrc.2017.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.101

Navigation