Skip to main content

Advertisement

Log in

Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) have been considered as a promising alternative to the commercialized lithium ion batteries (LIBs) in large-scale energy storage field for its rich reserve in the earth. Hard carbon has been expected to the first commercial anode material for SIBs. Among various of hard carbon materials, plant-derived carbon is prominent because of abundant source, low cost and excellent electrochemical performance. This review focuses on the recent progress in the development of plant-derived hard carbon anodes for SIBs. We summarized the microstructure and electrochemical performance of hard carbon materials pyrolyzed from different parts of plants at different temperatures. It aims to present a full scope of plant-derived hard carbon anode materials and provide in-depth understanding and guideline for the design of high-performance hard carbon for sodium ion anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev. 2010;14(3):919.

    CAS  Google Scholar 

  2. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009;38(9):2520.

    CAS  Google Scholar 

  3. Zhang Y, Liu X, Wang S, Li L, Dou S. Bio-nanotechnology in high-performance supercapacitors. Adv Energy Mater. 2017;7(21):1700592.

    Google Scholar 

  4. Jiao C, Zhao C, Zhang L, Sun H, Lu S. High loading sulfur electrode modified by porous carbon layer. Chin J Rare Met. 2019;43(4):390.

    Google Scholar 

  5. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):1703137.

    Google Scholar 

  6. Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938.

    Google Scholar 

  7. Xie X, Qi S, Wu D, Wang H, Li F, Peng X, Cai J, Liang J, Ma J. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.

    CAS  Google Scholar 

  8. Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.

    CAS  Google Scholar 

  9. Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038.

    CAS  Google Scholar 

  10. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3:18013.

    Google Scholar 

  11. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  12. Qiu S, Xiao L, Ai X, Yang H, Cao Y. Yolk–shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2017;9(1):345.

    CAS  Google Scholar 

  13. Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun. 2013;49(79):8973.

    CAS  Google Scholar 

  14. Naeyaert PJP, Avdeev M, Sharma N, Yahia HB, Ling CD. Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material. Chem Mater. 2014;26(24):7267.

    Google Scholar 

  15. Wu D, Li X, Xu B, Twu N, Liu L, Ceder G. NaTiO2: a layered anode material for sodium-ion batteries. Adv Funct Mater. 2015;8(1):195.

    CAS  Google Scholar 

  16. Ni D, Sun W, Wang Z, Bai Y, Lei H, Lai X, Sun K. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater. 2019;9(19):1900036.

    Google Scholar 

  17. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2012;2(7):873.

    CAS  Google Scholar 

  18. Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy. 2016;26:346.

    CAS  Google Scholar 

  19. Liu M, Zhang P, Qu Z, Yan Y, Lai C, Liu T, Zhang S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat Commun. 2019;10(1):1.

    Google Scholar 

  20. Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664.

    Google Scholar 

  21. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861.

    CAS  Google Scholar 

  22. Pham XM, Ngo DT, Le HTT, Didwal PN, Verma R, Min CW, Park CN, Park CJ. A self-encapsulated porous Sb–C nanocomposite anode with excellent Na-ion storage performance. Nanoscale. 2018;10(41):19399.

    CAS  Google Scholar 

  23. Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ Sci. 2014;7(1):323.

    CAS  Google Scholar 

  24. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214.

    CAS  Google Scholar 

  25. Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.

    CAS  Google Scholar 

  26. Balogun MS, Luo Y, Qiu W, Liu P, Tong Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon. 2016;98:162.

    CAS  Google Scholar 

  27. Xu B, Qi S, He P, Ma J. Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.

    CAS  Google Scholar 

  28. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F. 2020 Roadmap on carbon materials in energy storage and conversion. Chem Asian J. 2020;15(7):995.

    CAS  Google Scholar 

  29. Doeff MM, Ma Y, Visco SJ, De Jonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc. 1993;140(12):L169.

    CAS  Google Scholar 

  30. Xiao B, Rojo T, Li X. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem. 2018;12(1):133.

    Google Scholar 

  31. Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(6):1501929.

    Google Scholar 

  32. Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core–shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J Power Sources. 2018;395(15):305.

    CAS  Google Scholar 

  33. Beda A, Taberna PL, Simon P, Ghimbeu CM. Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon. 2018;139:248.

    CAS  Google Scholar 

  34. Wang Y, Li Y, Mao SS, Ye D, Liu W, Guo R, Feng Z, Kong J, Xie J. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. Sustain Energy Fuels. 2019;3(3):717.

    CAS  Google Scholar 

  35. Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater. 2017;61(2):133.

    Google Scholar 

  36. Ou J, Yang L, Zhang Z. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries. Powder Technol. 2019;344:89.

    CAS  Google Scholar 

  37. Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan C. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater. 2016;28(3):539.

    CAS  Google Scholar 

  38. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li-and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

    CAS  Google Scholar 

  39. Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C. 2015;119(37):21336.

    CAS  Google Scholar 

  40. Lu M, Yu W, Shi J, Liu W, Chen S, Wang X, Wang H. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochim Acta. 2017;251:396.

    CAS  Google Scholar 

  41. Wu T, Zhang C, Zou G, Hu J, Zhu L, Cao X, Hou H, Ji X. The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci China Mater. 2019;62(8):1127.

    CAS  Google Scholar 

  42. Lu P-R, Xia J-L, Dong X-L. Rapid sodium-ion storage in hard carbon anode material derived from Ganoderma lucidum residue with inherent open channels. ACS Sustain Chem Eng. 2019;7(17):14841.

    CAS  Google Scholar 

  43. Wu F, Liu L, Yuan Y, Li Y, Bai Y, Li T, Lu J, Wu C. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS Appl Mater Interfaces. 2018;10(32):27030.

    CAS  Google Scholar 

  44. Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294.

    Google Scholar 

  45. Hou H, Yu C, Liu X, Yao Y, Dai Z, Li D. The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. Chem Pap. 2019;73(5):1237.

    CAS  Google Scholar 

  46. Zhang T, Chen J, Yang B, Li H, Lei S, Ding X. Enhanced capacities of carbon nanosheets derived from functionalized bacterial cellulose as anodes for sodium ion batteries. RSC Adv. 2017;7(79):50336.

    CAS  Google Scholar 

  47. Liu H, Jia M, Yue S, Cao B, Zhu Q, Sun N, Xu B. Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. J Mater Chem A. 2017;5(20):9572.

    CAS  Google Scholar 

  48. Guo Y, Liu W, Wu R, Sun L, Zhang Y, Cui Y, Liu S, Wang H, Shan B. Marine biomass-derived porous carbon sheets with tunable N-doping content for superior sodium ion storage. ACS Appl Mater Interfaces. 2018;10(44):38376.

    CAS  Google Scholar 

  49. Jiang Q, Zhang ZH, Yin SY, Guo ZP, Wang SQ, Feng CQ. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci. 2016;379:73.

    CAS  Google Scholar 

  50. Zhang F, Yao Y, Wan J, Henderson D, Zhang X, Hu L. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater Interfaces. 2017;9(1):391.

    CAS  Google Scholar 

  51. Dou X, Hasa I, Hekmatfar M, Diemant T, Behm RJ, Buchholz D, Passerini S. Pectin, hemicellulose, or lignin? Impact of the biowaste source on the performance of hard carbons for sodium-ion batteries. ChemSusChem. 2017;10(12):2668.

    CAS  Google Scholar 

  52. Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A. 2016;4(34):13046.

    CAS  Google Scholar 

  53. Rybarczyk MK, Li Y, Qiao M, Hu YS, Titirici MM, Lieder M. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. J Energy Chem. 2019;29:17.

    Google Scholar 

  54. Yu C, Hou H, Liu X, Yao Y, Liao Q, Dai Z, Li D. Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int J Hydrog Energy. 2018;43(6):3253.

    CAS  Google Scholar 

  55. Wang PZ, Zhu XS, Wang QQ, Xu X, Zhou XS, Bao JC. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A. 2017;5(12):5761.

    CAS  Google Scholar 

  56. Wang QQ, Zhu XS, Liu YH, Fang YY, Zhou XS, Bao JC. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon. 2018;127:658.

    CAS  Google Scholar 

  57. Wang P, Fan L, Yan L, Shi Z. Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. J Alloys Compd. 2019;775:1028.

    CAS  Google Scholar 

  58. Zhu YY, Chen MM, Li Q, Yuan C, Wang CY. A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon. 2018;129:695.

    CAS  Google Scholar 

  59. Li R, Huang J, Li W, Li J, Cao L, Xu Z, He Y, Yu A, Lu G. Controlling carbon-oxygen double bond and pseudographic structure in shaddock peel derived hard carbon for enhanced sodium storage properties. Electrochim Acta. 2019;313:109.

    CAS  Google Scholar 

  60. Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano. 2014;8(7):7115.

    CAS  Google Scholar 

  61. Sun N, Liu H, Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A. 2015;3(41):20560.

    CAS  Google Scholar 

  62. Li H, Shen F, Luo W, Dai J, Han X, Chen Y, Yao Y, Zhu H, Fu K, Hitz E, Hu L. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl Mater Interfaces. 2016;8(3):2204.

    CAS  Google Scholar 

  63. Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(14):1600377.

    Google Scholar 

  64. Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater. 2016;6(18):1600659.

    Google Scholar 

  65. Wang C, Huang J, Qi H, Cao L, Xu Z, Cheng Y, Zhao X, Li J. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. J Power Sources. 2017;358:85.

    CAS  Google Scholar 

  66. Zhang N, Liu Q, Chen WL, Wan M, Li XC, Wang LL, Xue LH, Zhang WX. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J Power Sources. 2018;378:331.

    CAS  Google Scholar 

  67. Zhu Z, Liang F, Zhou Z, Zeng X, Wang D, Dong P, Zhao J, Sun S, Zhang Y, Li X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J Mater Chem A. 2018;6(4):1513.

    CAS  Google Scholar 

  68. Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S. Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A. 2017;5(20):9917.

    CAS  Google Scholar 

  69. Zhang T, Mao J, Liu XL, Xuan MJ, Bi K, Zhang XL, Hu JH, Fan JJ, Chen SM, Shao GS. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017;7(66):41504.

    CAS  Google Scholar 

  70. Zheng YH, Wang YS, Lu YX, Hu YS, Li J. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy. 2017;39:489.

    CAS  Google Scholar 

  71. Wang Y, Feng Z, Zhu W, Gariepy V, Gagnon C, Provencher M, Laul D, Veillette R, Trudeau ML, Guerfi A, Zaghib K. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries. Materials (Basel). 2018;11(8):1294.

    Google Scholar 

  72. Wang J, Yan L, Ren QJ, Fan LL, Zhang FM, Shi ZQ. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim Acta. 2018;291:188.

    CAS  Google Scholar 

  73. Zheng Y, Lu Y, Qi X, Wang Y, Mu L, Li Y, Ma Q, Li J, Hu Y-S. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Mater. 2019;18:269.

    Google Scholar 

  74. Izanzar I, Dahbi M, Kiso M, Doubaji S, Komaba S, Saadoune I. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon. 2018;137:165.

    CAS  Google Scholar 

  75. Zhang S, Li Y, Li M. Porous hard carbon derived from walnut shell as an anode material for sodium-ion batteries. JOM. 2018;70(8):1387.

    CAS  Google Scholar 

  76. Xu S-D, Zhao Y, Liu S, Ren X, Chen L, Shi W, Wang X, Zhang D. Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. J Mater Sci. 2018;53(17):12334.

    CAS  Google Scholar 

  77. Rath PC, Patra J, Huang HT, Bresser D, Wu TY, Chang JK. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries. ChemSusChem. 2019;12(10):2302.

    CAS  Google Scholar 

  78. Wu F, Zhang M, Bai Y, Wang X, Dong R, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12554.

    CAS  Google Scholar 

  79. Li X, Zeng X, Ren T, Zhao J, Zhu Z, Sun S, Zhang Y. The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. J Alloys Compd. 2019;787:229.

    CAS  Google Scholar 

  80. Arie AA, Tekin B, Demir E, Demir-Cakan R. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery. Mater Technol. 2019;34(9):515.

    CAS  Google Scholar 

  81. Li Y, Lu Y, Meng Q, Jensen ACS, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici MM, Hu YS. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater. 2019;9(48):1902852.

    CAS  Google Scholar 

  82. Meng Q, Lu Y, Ding F, Zhang Q, Chen L, Hu YS. Tuning the closed pore structure of hard carbons with the highest na storage capacity. ACS Energy Lett. 2019;4(11):2608.

    CAS  Google Scholar 

  83. Zhang Y, Li X, Dong P, Wu G, Xiao J, Zeng X, Zhang Y, Sun X. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces. 2018;10(49):42796.

    CAS  Google Scholar 

  84. Raj KA, Panda MR, Dutta DP, Mitra S. Bio-derived mesoporous disordered carbon: an excellent anode in sodium-ion battery and full-cell lab prototype. Carbon. 2019;143:402.

    Google Scholar 

  85. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5:1

    CAS  Google Scholar 

  86. Lu H, Ai F, Jia Y, Tang C, Zhang X, Huang Y, Yang H, Cao Y. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small. 2018;14(39):1802694.

    Google Scholar 

  87. Xiao LF, Cao YL, Henderson WA, Sushko ML, Shao YY, Xiao J, Wang W, Engelhard MH, Nie ZM, Liu J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy. 2016;19:279.

    CAS  Google Scholar 

  88. Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B. Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater. 2019;9(32):1901351.

    Google Scholar 

  89. Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X, Yang H, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater. 2018;8(20):1703238.

    Google Scholar 

  90. Luo W, Bommier C, Jian Z, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji X. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces. 2015;7(4):2626.

    CAS  Google Scholar 

  91. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.

    CAS  Google Scholar 

  92. Yang C, Xiong J, Ou X, Wu CF, Xiong X, Wang JH, Huang K, Liu M. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater Today Energy. 2018;8:37.

    Google Scholar 

  93. Weppner W, Huggins R. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977;124(10):1569.

    CAS  Google Scholar 

  94. Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C. 2010;114(51):22751.

    CAS  Google Scholar 

  95. Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10(10):725.

    CAS  Google Scholar 

  96. Seidl L, Bucher N, Chu E, Hartung S, Martens S, Schneider O, Stimming U. Intercalation of solvated Na-ions into graphite. Energy Environ Sci. 2017;10(7):1631.

    CAS  Google Scholar 

  97. Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc. 2000;147(4):1271.

    CAS  Google Scholar 

  98. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012;12(7):3783.

    CAS  Google Scholar 

  99. Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403.

    Google Scholar 

  100. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM. Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater. 2016;6(1):1501588.

    Google Scholar 

  101. Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small. 2017;13(31):1700762.

    Google Scholar 

  102. Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. 2013;6(10):2839.

    CAS  Google Scholar 

  103. Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta. 2016;190:337.

    CAS  Google Scholar 

  104. Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A. 2014;2(32):12733.

    CAS  Google Scholar 

  105. Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci. 2017;4(1):1600243.

    Google Scholar 

  106. Gaddam RR, Farokh Niaei AH, Hankel M, Searles DJ, Kumar NA, Zhao XS. Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J Mater Chem A. 2017;5(42):22186.

    CAS  Google Scholar 

  107. Zhao BS, Ding YC, Wen ZH. From jackfruit rags to hierarchical porous N-doped carbon: a high-performance anode material for sodium-ion batteries. Trans Tianjin Univ. 2019;25(5):429.

    Google Scholar 

  108. Zhao G, Zou G, Hou H, Ge P, Cao X, Ji X. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J Mater Chem A. 2017;5(46):24353.

    CAS  Google Scholar 

  109. Qin D, Liu Z, Zhao Y, Xu G, Zhang F, Zhang X. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon. 2018;130:664.

    CAS  Google Scholar 

  110. Fu H, Xu Z, Li R, Guan W, Yao K, Huang J, Yang J, Shen X. Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage. ACS Sustain Chem Eng. 2018;6(11):14751.

    CAS  Google Scholar 

  111. Xiang JY, Lv WM, Mu CP, Zhao J, Wang BC. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd. 2017;701:870.

    CAS  Google Scholar 

  112. Wang HL, Yu WH, Shi J, Mao N, Chen SG, Liu W. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta. 2016;188:103.

    CAS  Google Scholar 

  113. Hu FY, Liu SY, Wang JY, Li SM, Jian XG. Carbon nanosheet frameworks derived from pine cone shells as sodium-ion battery anodes. Mater Sci Forum. 2019;956:3.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Research and Development Project of Hunan Education Department (No. 18A114), the Joint Natural Science Project of Hunan-Changde (No. 2018JJ4001), the Youth Fund of Hunan Agricultural University (No. 18QN01) and the Funding for the Major Scientific Research and Innovation Team Cultivation at Hunan Agricultural University (No. 2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Liu or Zhi-Guo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Tang, W., Wu, FF. et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 39, 1019–1033 (2020). https://doi.org/10.1007/s12598-020-01443-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01443-z

Keywords

Navigation