Skip to main content
Log in

Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Hard carbon is deemed to be a most promising anode materials for sodium—ion batteries (SIBs), while, the issues of low capacity and low initial coulombic efficiency still exist limiting the development of SIBs. Although high temperature carbonization of biomass materials under nitrogen or argon atmosphere is a common method for preparation of hard carbon, there are few reports about the effects of different protective atmospheres on propriety of hard carbon. In this article, hornet’s nest (HN) is used to prepare hard carbon under nitrogen and argon. At a suitable carbonization temperature (1200 °C and 1400 °C), the hard carbon under argon possesses lower specific surface area (25–50 cm−3 g−1), but higher initial coulomb efficiency (4–6%) and higher capacity retention (3–6%). Thus, it is inferred that high—performance hard carbon can be obtained under argon atmosphere. Our research about the effect of sintering atmosphere on material properties is expected to provide a reference for the synthetization of hard carbon by high temperature carbonization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarascon, J.-M.: Is lithium the new gold? Nat. Chem. 2(6), 510 (2010)

    Article  CAS  Google Scholar 

  2. Jayaraman, S., Jain, A., Ulaganathan, M., Edison, E., Srinivasan, M.P., Balasubramanian, R., Aravindan, V., Madhavi, S.: Li-ion versus Na-ion capacitors: a performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chem. Eng. J. 316, 506–513 (2017)

    Article  CAS  Google Scholar 

  3. Pan, H., Hu, Y.-S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338 (2013)

    Article  CAS  Google Scholar 

  4. Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., Komaba, S.: Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 16(29), 15007–15028 (2014)

    Article  CAS  Google Scholar 

  5. Delmas, C.: Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8(17), 1703137 (2018)

    Article  CAS  Google Scholar 

  6. Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)

    Article  CAS  Google Scholar 

  7. Zhao, J.B., Li, X., Xiao, Q.: Fast solution combustion synthesis of porous NaFeTi 3 O 8 with superior sodium storage properties. Electron. Mater. Lett. 14(1), 1–7 (2017)

    Google Scholar 

  8. Song, Y., Liao, J., Chen, C., Yang, J., Chen, J., Gong, F., Wang, S., Xu, Z., Wu, M.: Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphenedoping for lithium and sodium ion batteries. Carbon. 142, 697–706 (2018)

    Article  CAS  Google Scholar 

  9. Wang, Y., Yu, X., Xu, S., Bai, J., Xiao, R., Hu, Y.-S., Li, H., Yang, X.-Q., Chen, L., Huang, X.: A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4(1), 2365 (2013)

    Article  Google Scholar 

  10. Wang, Y., Mu, L., Liu, J., Yang, Z., Yu, X., Gu, L., Hu, Y.-S., Li, H., Yang, X.-Q., Chen, L., Huang, X.: A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015)

    Article  CAS  Google Scholar 

  11. Wang, Y., Liu, J., Lee, B., Qiao, R., Yang, Z., Xu, S., Yu, X., Gu, L., Hu, Y.S., Yang, W., Kang, K., Li, H., Yang, X.Q., Chen, L., Huang, X.: Ti-substituted tunnel-type Na(0).(4)(4)MnO(2) as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015)

    Article  CAS  Google Scholar 

  12. Wang, Y., Xiao, R., Hu, Y.S., Avdeev, M., Chen, L.: P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 6, 6954 (2015)

    Article  CAS  Google Scholar 

  13. Barpanda, P., Oyama, G., Nishimura, S., Chung, S.C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)

    Article  CAS  Google Scholar 

  14. Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y.-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., Chen, L.: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)

    Article  CAS  Google Scholar 

  15. Xu, Z., Wu, M., Chen, Z., Chen, C., Yang, J., Feng, T., Paek, E., Mitlin, D.: Direct structure - performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 1802272 (2019)

  16. Xiao, L., Lu, H., Fang, Y., Sushko, M.L., Cao, Y., Ai, X., Yang, H., Liu, J.: Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8(20), 1703238 (2018)

    Article  CAS  Google Scholar 

  17. Luo, W., Schardt, J., Bommier, C., Wang, B., Razink, J., Simonsen, J., Ji, X.: Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1(36), 10662 (2013)

    Article  CAS  Google Scholar 

  18. Zheng, Y., Wang, Y., Lu, Y., Hu, Y.-S., Li, J.: A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39, 489–498 (2017)

    Article  CAS  Google Scholar 

  19. Chen, C., Wu, M., Xu, Z., Feng, F., Yang, J., Chen, Z., Wang, S., Wang, Y.: Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J. Colloid Interf. Sci. 538(7), 267–276 (2019)

    Article  CAS  Google Scholar 

  20. Darwiche, A., Toiron, M., Sougrati, M.T., Fraisse, B., Stievano, L., Monconduit, L.: Performance and mechanism of FeSb 2 as negative electrode for Na-ion batteries. J. Power Sources 280, 588–592 (2015)

    Article  CAS  Google Scholar 

  21. Kong, F., Lv, L., Gu, Y., Tao, S., Jiang, X., Qian, B., Gao, L.: Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries. J. Mater. Sci. 54, 4225–4235 (2018)

    Article  CAS  Google Scholar 

  22. Yuan, S., Huang, X-l, Ma, D-l, Wang, H-g, Meng, F-z, Zhang, X-b: Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26(14), 2273–2279 (2014)

    Article  CAS  Google Scholar 

  23. Gong, F., Xia, D., Bi, C., Yang, J., Zeng, W., Chen, C., Ding, Y., Xu, Z., Liao, J., Wu, M.: Systematic comparison of hollow and solid Co 3V 2 O 8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochim. Acta 264, 358–366 (2018)

    Article  CAS  Google Scholar 

  24. Wang, S., Gong, F., Yang, S., Liao, J., Wu, M., Xu, Z., Chen, C., Yang, X., Zhao, F., Wang, B., Wang, Y., Sun, X.: Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018)

    Article  CAS  Google Scholar 

  25. Gong, F., Ding, Z., Fang, Y., Tong, C.J., Xia, D., Lv, Y., Wang, B., Papavassiliou, D.V., Liao, J., Wu, M.: Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: insights from multiscale modeling. ACS Appl. Mater. Interfaces. 10(17), 14614–14621 (2018)

    Article  CAS  Google Scholar 

  26. Liu, P., Li, Y., Hu, Y.-S., Li, H., Chen, L., Huang, X.: A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 4(34), 13046–13052 (2016)

    Article  CAS  Google Scholar 

  27. Zhang, F., Yao, Y., Wan, J., Henderson, D., Zhang, X., Hu, L.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces. 9(1), 391–397 (2016)

    Article  CAS  Google Scholar 

  28. Chen, C., Wu, M., Wang, S., Yang, J., Qin, J., Peng, Z., Feng, T., Gong, F.: An: In situ iodine-doped graphene/silicon composite paper as a highly conductive and self-supporting electrode for lithium-ion batteries. RSC Adv. 7(61), 38639–38646 (2017)

    Article  CAS  Google Scholar 

  29. Asher, R.C.: A lamellar compound of sodium and graphite. J. Inorg. Nucl. Chem. 10(3), 238–249 (1959)

    Article  CAS  Google Scholar 

  30. Stevens, D.A., Dahn, J.R.: The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803 (2001)

    Article  CAS  Google Scholar 

  31. Hasa, I., Dou, X., Buchholz, D., Yang, S.H., Hassoun, J., Passerini, S., Scrosati, B.: A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 310, 26–31 (2016)

    Article  CAS  Google Scholar 

  32. Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. 53(38), 10169–10173 (2014)

    Article  CAS  Google Scholar 

  33. Kim, H., Hong, J., Park, Y.-U., Kim, J., Hwang, I., Kang, K.: Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 25(4), 534–541 (2015)

    Article  CAS  Google Scholar 

  34. Zhou, X., Guo, Y.-G.: Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 1(1), 83–86 (2014)

    Article  CAS  Google Scholar 

  35. Wang, Q., Zhao, C., Lu, Y., Li, Y., Zheng, Y., Qi, Y., Rong, X., Jiang, L., Qi, X., Shao, Y., Pan, D., Li, B., Hu, Y.S., Chen, L.: Advanced nanostructured anode materials for sodium-ion batteries. Small 13(42), 1701835 (2017)

    Article  CAS  Google Scholar 

  36. Wang, J., Nie, P., Ding, B., Dong, S., Hao, X., Dou, H., Zhang, X.: Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5(6), 2411–2428 (2017)

    Article  CAS  Google Scholar 

  37. Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., Dean, D.R., Seefeldt, L.C.: Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114(8), 4041–4062 (2014)

    Article  CAS  Google Scholar 

  38. Kim, H.T., Shin, H., Jeon, I.Y., Yousaf, M., Baik, J., Cheong, H.W., Park, N., Baek, J.B., Kwon, T.H.: Carbon-heteroatom bond formation by an ultrasonic chemical reaction for energy storage systems. Adv. Mater. 29(47), 1702747 (2017)

    Article  CAS  Google Scholar 

  39. Yu, P., Schaffer, G.B.: Microstructural evolution during pressureless infiltration of aluminium alloy parts fabricated by selective laser sintering. Acta Mater. 57(1), 163–170 (2009)

    Article  CAS  Google Scholar 

  40. Fey, T.K., Kao, Y.C.: Synthesis and characterization of pyrolyzed sugar carbons under nitrogen or argon atmospheres as anode materials for lithium-ion batteries. Mater. Chem. Phys. 73(1), 37–46 (2002)

    Article  CAS  Google Scholar 

  41. Berger, L.M., Gruner, W.: Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide. Int. J. Refract Metal Hard Mater. 20(3), 235–251 (2002)

    Article  CAS  Google Scholar 

  42. Xiao, P., Liu, D., Garcia, B.B., Sepehri, S., Zhang, Y., Cao, G.: Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sens. Actuators B: Chem. 134(2), 367–372 (2008)

    Article  CAS  Google Scholar 

  43. Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C.: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013)

    Article  CAS  Google Scholar 

  44. Cao, B., Liu, H., Xu, B., Lei, Y., Chen, X., Song, H.: Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4(17), 6472–6478 (2016)

    Article  CAS  Google Scholar 

  45. Qiu, S., Xiao, L., Sushko, M.L., Han, K.S., Shao, Y., Yan, M., Liang, X., Mai, L., Feng, J., Cao, Y., Ai, X., Yang, H., Liu, J.: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017)

    Article  CAS  Google Scholar 

  46. Yang, T., Qian, T., Wang, M., Shen, X., Xu, N., Sun, Z., Yan, C.: A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 28(3), 539–545 (2016)

    Article  CAS  Google Scholar 

  47. Liu, H., Jia, M., Yue, S., Cao, B., Zhu, Q., Sun, N., Xu, B.: Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. J. Mater. Chem. A 5(20), 9572–9579 (2017)

    Article  CAS  Google Scholar 

  48. Bommier, C., Surta, T.W., Dolgos, M., Ji, X.: New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015)

    Article  CAS  Google Scholar 

  49. Zhang, F., Yao, Y., Wan, J., Henderson, D., Zhang, X., Hu, L.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 9(1), 391–397 (2017)

    Article  CAS  Google Scholar 

  50. Cao, Y., Xiao, L., Sushko, M.L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z., Saraf, L.V., Yang, Z., Liu, J.: Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012)

    Article  CAS  Google Scholar 

  51. Memarzadeh Lotfabad, E., Kalisvaart, P., Kohandehghan, A., Karpuzov, D., Mitlin, D.: Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2(46), 19685–19695 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Sichuan Science and Technology Program (2017HH0067, 2018GZ0006 and 2018GZ0134).

Author information

Authors and Affiliations

Authors

Contributions

Y. Wang Z. Xu, and M. Wu designed the experiment. J. Chen, C. Chen, Y. Song, Z. Chen, and J. Liu prepared HN. J. Chen performed all electrochemical characterization. J. Chen, C. Chen, Y. Song, Z. Xu, M. Wu, and Y. Wang carried out and analyzed materials characterization and electrochemical measurements. J. Chen, Z. Xu, and Y. Wang wrote this paper. The manuscript was written through contributions of all authors.

Corresponding authors

Correspondence to Mengqiang Wu or Yuesheng Wang.

Ethics declarations

Conflict of interest

All authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Chen, J., Wu, M. et al. Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery. Electron. Mater. Lett. 15, 428–436 (2019). https://doi.org/10.1007/s13391-019-00143-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00143-w

Keywords

Navigation