Skip to main content
Log in

Synthesis and formation mechanism of nanocrystalline ZrB2–Al2O3 composite powders via an amorphous precursor

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

ZrB2–Al2O3 composite powders were synthesized at 1100 °C using a novel ZrB2 precursor and Al powders as raw materials. The final ZrB2–Al2O3 composite powders consisted of submicron Al2O3 and nanosize ZrB2 (50–100 nm) particles, which were homogeneously mixed in microscale. Combined with thermodynamic calculation and experiment results, the formation mechanism of ZrB2–Al2O3 composite powders was proposed as follows: ZrB2 precursor first decomposed into ZrO2 and amorphous B2O3. Aluminothermic reduction of ZrO2 and B2O3 generated Zr and B atoms and the coproducts Al2O3, and then, a series of reactions between Zr atoms, B atoms and Al took place to form ZrB2 and Al3Zr. Then, ZrB2, Al2O3 and Al were obtained through a liquid–solid reaction between Al3Zr and B2O3, which is the limiting step in the conversion process. When the Al3Zr was exhausted, the reaction between Al, ZrO2 and B became the main reaction to obtain ZrB2 and Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang GJ, Ni DW, Zou J, Liu HT, Wu WW, Liu JX, Suzuki TS, Sakka Y. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—a review. J Eur Ceram Soc. 2018;38(2):371.

    Article  CAS  Google Scholar 

  2. Gui T, Wang TM, Yang L, Liu YY, Bai X, Wang LJ, Song B. Synthesis and densification of zirconium diboride prepared by carbothermal reduction. Rare Met. 2018;37(12):1076.

    Article  CAS  Google Scholar 

  3. Gao HD, Wang ZH, Shao J. Manufacture and characteristics of Al2O3 composite coating on steel substrate by SHS process. Rare Met. 2019;38(7):704.

    Article  CAS  Google Scholar 

  4. Cheng T, Li W. The temperature-dependent ideal tensile strength of ZrB2, HfB2, and TiB2. J Am Ceram Soc. 2015;98(1):190.

    Article  CAS  Google Scholar 

  5. Sciti D, Brach M, Bellosi A. Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2–MoSi2 ceramic. Scr Mater. 2005;53(11):1297.

    Article  CAS  Google Scholar 

  6. Brach M, Sciti D, Balbo A, Bellosi A. Short-term oxidation of a ternary composite in the system AlN–SiC–ZrB2. J Eur Ceram Soc. 2005;25(10):1771.

    Article  CAS  Google Scholar 

  7. Yan CL, Liu RJ, Zhang CR, Cao YB, Long XH. Synthesis and formation mechanism of ZrB2–Al2O3 composite powder starting from ZrO2, Al, and BN. Adv Powder Technol. 2016;27(2):711.

    Article  CAS  Google Scholar 

  8. Li B, Deng JX, Li YS. Oxidation behavior and mechanical properties degradation of hot-pressed Al2O3/ZrB2/ZrO2 ceramic composites. Int. J Refract Met Hard Mater. 2009;27(4):747.

    Article  CAS  Google Scholar 

  9. Yeh CL, Li RF. Formation of TiB2–Al2O3 and NbB2–Al2O3 composites by combustion synthesis involving thermite reactions. Chem Eng J. 2009;147(2–3):405.

    Article  CAS  Google Scholar 

  10. Mishra SK, Bhople A, Paswan S. Microstructure, hardness, toughness and oxidation resistance of Al2O3–ZrB2 composite with different Ti percentages prepared by in situ SHS dynamic compaction. Int J Refract Met Hard Mater. 2014;43:7.

    Article  CAS  Google Scholar 

  11. Liu J, Ownby PD. Enhanced mechanical properties of alumina by dispersed titanium diboride particulate inclusions. J Am Ceram Soc. 2005;74(1):241.

    Article  Google Scholar 

  12. Mishra SK, Das SK, Sherbacov V. Fabrication of Al2O3–ZrB2 in situ composite by SHS dynamic compaction: a novel approach. Compos Sci Technol. 2007;67(11–12):2447.

    Article  CAS  Google Scholar 

  13. Mishra SK, Das SK, Pathak LC. Sintering behavior of self-propagating high temperature synthesized ZrB2–Al2O3 composite powder. Mater Sci Eng A. 2006;426(1–2):229.

    Article  Google Scholar 

  14. Jalaly M, Bafghi MSh, Tamizifar M, Gotor FJ. Formation mechanism of ZrB2–Al2O3 nanocomposite powder by mechanically induced self-sustaining reaction. J Mater Sci. 2013;48(21):7757.

    Article  Google Scholar 

  15. Deris L, Sharafi S, Akbari GH. Effect of milling speed on mechanical activation of Al/ZrO2/H3BO3 system to prepare Al2O3–ZrB2 composite powder. J Therm Anal Calorim. 2014;115(1):401.

    Article  CAS  Google Scholar 

  16. Zhu HG, Jia CC, Li JL, Zhao J, Song JZ, Yao YQ, Xie ZH. Microstructure and high temperature wear of the aluminum matrix composites fabricated by reaction from Al–ZrO2–B elemental powders. Powder Technol. 2012;217(2):401.

    Article  CAS  Google Scholar 

  17. Sayagués MJ, Avilés MA, Córdoba JM, Gotor FJ. Self-propagating combustion synthesis via an MSR process: an efficient and simple method to prepare (Ti, Zr, Hf)B2–Al2O3 powder nanocomposites. Powder Technol. 2014;256(2):244.

    Article  Google Scholar 

  18. Xiao GQ, Fu YL, Zhang ZW, Hou AD. Mechanism and microstructural evolution of combustion synthesis of ZrB2–Al2O3 composite powders. Ceram Int. 2015;41(4):5790.

    Article  CAS  Google Scholar 

  19. Yin T, Jiang BY, Su ZA, Huang QZ. Effects of mannitol on the synthesis of ultra-fine ZrB2 powders. J Sol–Gel Sci Technol. 2018;85(1):41.

    Article  CAS  Google Scholar 

  20. Liu JL, Zhang P, Zhang XK, Xie QQ, Pan DJ, Zhang J, Zhang M. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method. Rare Met. 2018;36(9):704.

    Article  CAS  Google Scholar 

  21. Jiang ZY, Zhu KR, Lin ZQ, Jin SW, Li G. Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol–gel method. Rare Met. 2018;37(10):881.

    Article  CAS  Google Scholar 

  22. Abbasi BJ, Zakeri M, Tayebifard SA. Mechanochemical synthesis of Al2O3–ZrB2–ZrO2 nanocomposite powder. Mater Res Bull. 2014;49(1):672.

    Article  Google Scholar 

  23. Zhang SW, Khangkhamano M, Zhang HJ, Yeprem HA. Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction. J Am Ceram Soc. 2014;97(6):1686.

    Article  CAS  Google Scholar 

  24. Kuo CW, Lee KC, Yen FL, Shen YH, Lee HE, Wen SB, Chin WM, Stack MM. Growth kinetics of tetragonal and monoclinic ZrO2 crystallites in 3 mol% yttria partially stabilized ZrO2(3Y-PSZ) precursor powder. J Alloys Compd. 2012;592(3):288.

    Google Scholar 

  25. Singhal A, Toth LM, Lin JS, Affholter K. Zirconium (IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. J Am Chem Soc. 1996;118(46):11529.

    Article  CAS  Google Scholar 

  26. Lei BL, Qin W, Kang GL, Peng C, Wu JQ. Desert rose-shaped zircon synthesized by low-temperature hydrothermolysis. J Am Ceram Soc. 2015;98(5):1626.

    Article  CAS  Google Scholar 

  27. Concha BM, Chatenet M, Maillard F, Ticianelli EA, Lima FH, de Lima RB. In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction. Phys Chem Chem Phys. 2010;12(37):11507.

    Article  CAS  Google Scholar 

  28. Liang LP, Xu Y, Wu D, Sun YH. A simple sol-gel route to ZrO2 films with high optical performances. Mater Chem Phys. 2009;114(1):252.

    Article  CAS  Google Scholar 

  29. Concha BM, Chatenet M, Coutanceau C, Hahn F. In situ infrared (FTIR) study of the borohydride oxidation reaction. Electrochem Commun. 2009;11(1):223.

    Article  CAS  Google Scholar 

  30. Walker LS, Corral EL. Structural influence on the thermal conversion of self-catalyzed HfB2/ZrB2 sol-gel precursors by rapid ultrasonication of oxychloride hydrates. J Am Ceram Soc. 2014;97(2):399.

    Article  CAS  Google Scholar 

  31. Cheng GW. An inorganic–organic hybrid precursor strategy for the synthesis of zirconium diboride powders. Int J Refract Met Hard Mater. 2013;36:149.

    Article  CAS  Google Scholar 

  32. Goel N, Sinha N, Kumar B. Growth and properties of sodium tetraborate decahydrate single crystals. Mater Res Bull. 2013;48(4):1632.

    Article  CAS  Google Scholar 

  33. Guo GY, Chen YL. High-quality zirconia powder resulting from the attempted separation of acetic acid from acrylic acid with zirconium oxychloride. J Mater Chem. 2011;11(4):1283.

    Article  Google Scholar 

  34. Irshad HM, Ahmed BA, Ehsan MA, Khan TI, Laoui T, Yousaf MR, Ibrahim A, Hakeem AS. Investigation of the structural and mechanical properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma sintering. Ceram Int. 2017;43(14):10645.

    Article  CAS  Google Scholar 

  35. Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer; 1991. 276.

    Google Scholar 

  36. Feng CF, Froyen L. In-situ P/M Al/(ZrB2 + Al2O3) MMCs: processing microstructure and mechanical characterization. Acta Mater. 1999;47(18):4571.

    Article  CAS  Google Scholar 

  37. Zhu HG, Yu ZL, Hua B, Li JL, Huang JW, Xie ZH. Chemical reaction mechanism, microstructure characteristics and mechanical properties of in situ (α-Al2O3 + ZrB2)/Al composites. Meter Chem Phys. 2017;196(1):45.

    Article  CAS  Google Scholar 

  38. Wang HM, Li GR, Zhao YT, Zhang Z. Microstructure, billet surface quality and tensile property of (Al2O3 + Al3Zr)p/Al composites in situ synthesized with electromagnetic field. J Alloys Compd. 2011;509(18):5696.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51672170 and 51702206) and Shanghai Science and Technology Commission Research Project (No. 17XD1424700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Li or Qiang Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, SL., Fan, YL., Li, R. et al. Synthesis and formation mechanism of nanocrystalline ZrB2–Al2O3 composite powders via an amorphous precursor. Rare Met. 40, 1801–1807 (2021). https://doi.org/10.1007/s12598-020-01428-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01428-y

Keywords

Navigation