Skip to main content
Log in

Improved wear resistance of biodegradable Mg–1.5Zn–0.6Zr alloy by Sc addition

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnesium alloys exhibit significant potential for use in next-generation biodegradable materials. Implanted magnesium alloys are expected to exhibit good wear resistance. In this work, the effects of rare earth metal Sc on the wear resistance of biodegradable magnesium alloys were studied. The average grain sizes of Mg–1.5Zn–0.6Zr–xSc (ZK21–xSc, x = 0, 0.2, 0.5, 1.0; wt%) alloys decreased with Sc content increasing. Unlike other rare earth metals, the grain refinement mechanism of Sc belongs to the heterogeneous nucleation mechanism. The yield tensile strengths and Vickers hardness of the ZK21–xSc alloys markedly improved with the addition of Sc increasing. This could be due to the grain refinement and enhanced bond energy resulting from Sc addition. Moreover, the friction and wear tests showed that the friction coefficient of the alloys decreased and the weight loss reduced with Sc addition increasing. This implies that Sc addition could enhance the wear resistance of magnesium alloys. With the addition of Sc increasing, the peeling phenomenon weakened gradually and the worn surfaces of samples became smoother. The major wear mechanisms of the as-cast ZK21–xSc alloys were abrasion wear and delamination wear.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pan H, Qin G, Huang Y, Ren Y, Sha X, Han X, Liu ZQ, Li C, Wu X, Chen H, He C, Chai L, Wang Y, Nie JF. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater. 2018;149:350.

    Article  CAS  Google Scholar 

  2. Luo AA. Recent magnesium alloy development for elevated temperature applications. Int Mater Rev. 2004;49(1):13.

    Article  CAS  Google Scholar 

  3. Tan L, Zhang XY, Xia T, Huang GJ, Liu Q. Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension-compression fatigue testing. Rare Met. 2020;39(2):162.

    Article  CAS  Google Scholar 

  4. Zhao X, Ning Z, Li Z, Zou W, Li B, He K, Cao F, Sun J, Luo AA. In-mold oxidation behavior of Mg–4.32Y–2.83Nd–0.41Zr alloy. J Mater Sci. 2018;53(15):11091.

    Article  CAS  Google Scholar 

  5. Wang JL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.

    Article  CAS  Google Scholar 

  6. Xie XB, Chen M, Liu P, Shang JX, Liu T. Synergistic catalytic effects of the Ni and V nanoparticles on the hydrogen storage properties of Mg–Ni–V nanocomposite. Chem Eng J. 2018;347:145.

    Article  CAS  Google Scholar 

  7. Wan DQ. Strain amplitude-dependent internal friction of as-cast high damping magnesium alloy during cyclic vibration. Rare Met. 2013;32(1):25.

    Article  CAS  Google Scholar 

  8. Kim JH, An BM, Lim DH, Park JY. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Water Res. 2018;132:200.

    Article  Google Scholar 

  9. Liu E, Yu S, Ji Z, Niu Y, Xiong W, Cao N. Preparation, microstructure and properties of fly ash cenosphere/Mg alloy composites for degradable fracturing ball applications. Chin J Rare Met. 2019;43(8):792.

    Google Scholar 

  10. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1.

    Article  Google Scholar 

  11. Zhao D, Witte F, Lu F, Wang J, Li J, Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials. 2017;112:287.

    Article  CAS  Google Scholar 

  12. Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561.

    Article  CAS  Google Scholar 

  13. Liu DB, Wu B, Wang X, Chen MF. Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid. Rare Met. 2013;34(8):553.

    Article  CAS  Google Scholar 

  14. Haude M, Erbel R, Erne P, Verheye S, Degen H, Böse D, Vermeersch P, Wijnbergen I, Weissman N, Prati F, Waksman R, Koolen J. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 2013;381(9869):836.

    Article  CAS  Google Scholar 

  15. Huang L, Su K, Zheng YF, Yeung KWK, Liu XM. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.

    Article  CAS  Google Scholar 

  16. Zeng RC, Qi WC, Cui HZ, Zhang F, Li SQ, Han EH. In vitro corrosion of as-extruded Mg–Ca alloys—the influence of Ca concentration. Corros Sci. 2015;96:23.

    Article  CAS  Google Scholar 

  17. Li T, He Y, Zhou J, Tang S, Yang Y, Wang X. Influence of albumin on in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. Mater Lett. 2018;217:227.

    Article  CAS  Google Scholar 

  18. Li T, He Y, Wu J, Zhou J, Tang S, Yang Y, Wang X. Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr alloy. J Mater Sci. 2018;53(20):14075.

    Article  CAS  Google Scholar 

  19. Esguerra-Arce J, Castaneda AB, Esguerra-Arce A, Aguilar Y, Mischler S. Fretting corrosion between bone and calcium phosphate-calcium titanate coatings. Wear. 2018;414:366.

    Article  Google Scholar 

  20. Adetunla A, Akinlabi E. Influence of reinforcements in friction stir processed magnesium alloys: insight in medical applications. Mater Res Express. 2018;6(2):025406.

    Article  Google Scholar 

  21. Shikinami Y, Kawabe Y, Yasukawa K, Tsuta K, Kotani Y, Abumi K. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric. Spine J. 2010;10(2):141.

    Article  Google Scholar 

  22. Mordike BL, Stulíková I, Smola B. Mechanisms of creep deformation in Mg–Sc-based alloys. Metall Mater Trans A. 2005;36(7):1729.

    Article  Google Scholar 

  23. Mordike BL. Creep-resistant magnesium alloys. Mater Sci Eng A. 2002;324(1):103.

    Article  Google Scholar 

  24. Ma N, Peng Q. Influence of scandium on corrosion properties and electrochemical behaviour of Mg alloys in different media. Int J Electrochem Sci. 2012;7(9):8020.

    CAS  Google Scholar 

  25. Li T, He Y, Zhou J, Tang S, Yang Y, Wang X. Microstructure and mechanical property of biodegradable Mg–1.5Zn–0.6Zr alloy with varying contents of scandium. Mater Lett. 2018;229:60.

    Article  CAS  Google Scholar 

  26. Brar HS, Ball JP, Berglund IS, Allen JB, Manuel MV. A study of a biodegradable Mg–3Sc–3Y alloy and the effect of self-passivation on the in vitro degradation. Acta Biomater. 2013;9(2):5331.

    Article  CAS  Google Scholar 

  27. Li T, He Y, Zhou J, Tang S, Yang Y, Wang X. Effects of scandium addition on biocompatibility of biodegradable Mg–1.5Zn–0.6Zr alloy. Mater Lett. 2018;215:200.

    Article  CAS  Google Scholar 

  28. Lachine EE, Noujaim AA, Ediss C, Wieber LI. Toxicity, tissue distribution and excretion of 46ScCl3 and 46Sc-EDTA in mice. Int J Appl Radiat Isot. 1976;27(7):373.

    Article  CAS  Google Scholar 

  29. Moghaddam-Banaem L, Jalilian AR, Pourjavid M, Bahrami-Samani A, Mazidi M, Ghannadi-Maragheh M. Preparation and quality control of scandium-46 bleomycin as a possible therapeutic agent. Iran J Nucl Med. 2012;20(1):19.

    CAS  Google Scholar 

  30. Li T, Zhang H, He Y, Wang X. Comparison of corrosion behavior of Mg–1.5Zn–0.6Zr and AZ91D alloys in a NaCl solution. Mater Corros. 2015;66(1):7.

    Article  Google Scholar 

  31. Li T, Zhang H, He Y, Wen N, Wang X. Microstructure, mechanical properties and in vitro degradation behavior of a novel biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. J Mater Sci Technol. 2015;31(7):744.

    Article  Google Scholar 

  32. Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, Vogt C, Drücker H, Willumeit R, Kainer KU. Magnesium alloys as implant materials—principles of property design for Mg–RE alloys. Acta Biomater. 2010;6(5):1714.

    Article  CAS  Google Scholar 

  33. Fu P, Peng L, Jiang H, Ma L, Zhai C. Chemical composition optimization of gravity cast Mg–yNd–xZn–Zr alloy. Mater Sci Eng A. 2008;496(1–2):177.

    Google Scholar 

  34. Wan YC, Jiang SN, Liu CM, Wang BZ, Chen ZY. Effect of Nd and Dy on the microstructure and mechanical property of the as extruded Mg–1Zn–0.6Zr alloy. Mater Sci Eng A. 2015;625:158.

    Article  CAS  Google Scholar 

  35. Jiang J, Bi G, Liu J, Ye C, Lian J, Jiang Z. Microstructures and mechanical properties of extruded Mg–2Sn–xYb (x = 0, 0.1, 0.5 at%) sheets. J Magnes Alloys. 2014;2(3):257.

    Article  CAS  Google Scholar 

  36. Fang D, Bi G, Wang L, Li G, Jiang Z. Microstructures and mechanical properties of Mg–2Y–1Mn–1–2Nd alloys fabricated by extrusion. Mater Sci Eng A. 2010;527(16–17):4383.

    Article  Google Scholar 

  37. Li Q, Wang Q, Wang Y, Zeng X, Ding W. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. J Alloys Compd. 2007;427(1–2):115.

    Article  CAS  Google Scholar 

  38. Liu CM, Zhu XR, Zhou HT. Phase Diagrams of Magnesium Alloys. Changsha: Central South University Press; 2006. 49.

    Google Scholar 

  39. Xie ZZ. Analysis on valence electron structure of Mg–Sc alloy. J Taiyuan Univ. 2010;11(4):135.

    Google Scholar 

  40. Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51174025), the National Key Research and Development Program of China (Nos. 2016YFB0301105 and 2017YFB0103904), Shandong Provincial Natural Science Foundation (No. ZR2017LEM002), the Specialized Fund for Shandong Postdoctoral Innovation Project (No. 201703093) and the Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0034). Thank Yong He and Hai-Long Zhang at University of Science and Technology Beijing and Xi-Wei Liu at Lepu Medical Technology (Beijing) Co., Ltd. for meaningful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Hua Wu or Ji-Xue Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, XT., Tang, SQ. et al. Improved wear resistance of biodegradable Mg–1.5Zn–0.6Zr alloy by Sc addition. Rare Met. 40, 2206–2212 (2021). https://doi.org/10.1007/s12598-020-01420-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01420-6

Keywords

Navigation