Skip to main content
Log in

Low-thermal-conductivity thermal barrier coatings with a multi-scale pore design and sintering resistance following thermal exposure

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-insulation, long-life thermal barrier coatings (TBCs) decrease the service temperature of superalloys and improve the service life of gas turbines. Improvement in the thermal insulation properties of the coating mainly depends on the optimization of the TBC structure. An important challenge for TBCs is maintaining a high performance during thermal exposure without degradation, as the pore-rich structure of the topcoat would inevitably be transformed by sintering. A low-thermal-conductivity anti-sintering coating can overcome the trade-off between thermal insulation and sinter degradation. In this review, the design, preparation, and serviceability evaluation of a low-thermal-conductivity anti-sintering coating will be discussed. Furthermore, directions for potential development are introduced. This paper provides a comprehensive understanding of the structured tailoring of TBCs for better thermal insulation and anti-sintering performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen HF, Zhang C, Liu YC, Song P, Li WX, Yang G, Liu B. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01307-1.

    Article  Google Scholar 

  2. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.

    CAS  Google Scholar 

  3. Donachie MJ, Donachie SJ. Superalloys: a technical guide. Ohio: ASM International; 2002. 10.

    Google Scholar 

  4. Zhang WW, Li GR, Zhang Q, Yang GJ. Comprehensive damage evaluation of localized spallation of thermal barrier coatings. J Adv Ceram. 2017;6(3):230.

    CAS  Google Scholar 

  5. Liu QM, Huang SZ, He AJ. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. J Mater Sci Technol. 2019;35(12):2814.

    Google Scholar 

  6. Zhang BX, Cheng LF, Lu YC, Zhang Q. Scalable preparation of graphene reinforced zirconium diboride composites with strong dynamic response. Carbon. 2018;139:1020.

    CAS  Google Scholar 

  7. Deng SJ, Wang P, He YD, Zhang J. Surface microstructure and high temperature oxidation resistance of thermal sprayed NiCoCrAlY bond-coat modified by cathode plasma electrolysis. J Mater Sci Technol. 2017;33(9):1055.

    Google Scholar 

  8. Li F, Zhou L, Liu JX, Liang YC, Zhang GJ. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J Adv Ceram. 2019;8(4):576.

    Google Scholar 

  9. Yang GJ, Kang XH, Li CX, Li CJ. Influence of deposition temperature on the splat bonding and mechanical properties of plasma-sprayed tungsten coatings. Rare Metal Mater Eng. 2012;41(s1):394.

    CAS  Google Scholar 

  10. Lv BW, Mücke R, Fan XL, Wang T, Guillon O, Vaßen R. Sintering resistance of advanced plasma-sprayed thermal barrier coatings with strain-tolerant microstructures. J Eur Ceram Soc. 2018;38(15):5092.

    CAS  Google Scholar 

  11. Zhou DP, Malzbender J, Sohn YJ, Guillon O, Vaßen R. Sintering behavior of columnar thermal barrier coatings deposited by axial suspension plasma spraying (SPS). J Eur Ceram Soc. 2019;39(2–3):482.

    CAS  Google Scholar 

  12. Chen L, Yang GJ. Epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats. J Therm Spray Technol. 2018;27(3):255.

    Google Scholar 

  13. Li GR, Yang GJ, Li CX, Li CJ. Force transmission and its effect on structural changes in plasma-sprayed lamellar ceramic coatings. J Eur Ceram Soc. 2017;37(8):2877.

    CAS  Google Scholar 

  14. Chen L, Yang GJ. Epitaxial growth and cracking of highly tough 7YSZ splats by thermal spray technology. J Adv Ceram. 2018;7(1):17.

    CAS  Google Scholar 

  15. Zhang Z, Duan XM, Qiu BF, Yang ZH, Cai DL, He PG, Jia DC, Zhou Y. Preparation and anisotropic properties of textured structural ceramics: a review. J Adv Ceram. 2019;8(3):289.

    CAS  Google Scholar 

  16. Chen L, Yang GJ. Hetero-orientation epitaxial growth of TiO2 splats on polycrystalline TiO2 substrate. J Therm Spray Technol. 2018;27(5):880.

    CAS  Google Scholar 

  17. Chen L, Yang GJ, Li CX, Wang YY, Luo XT, Zhang SL, Li CJ. Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings. Adv Ceram. 2016;37(1):18.

    Google Scholar 

  18. Tahir A, Li GR, Liu MJ, Yang GJ, Li CX, Wang YY, Li CJ. Improving WC–Co coating adhesive strength on rough substrate: finite element modeling and experiment. J Mater Sci Technol. 2020;37:1.

    Google Scholar 

  19. Peng XM, Wu AR, Dong LJ, Tao YR, Gao WG, Zhou XL. Stability of NiCrAlY coating/titanium alloy system under pure thermal exposure. Rare Met. 2017;36(8):659.

    CAS  Google Scholar 

  20. Meng GH, Zhang BY, Liu H, Yang GJ, Xu T, Li CX, Li CJ. Vacuum heat treatment mechanisms promoting the adhesion strength of thermally sprayed metallic coatings. Surf Coat Technol. 2018;344:102.

    CAS  Google Scholar 

  21. Meng GH, Zhang BY, Liu H, Yang GJ, Xu T, Li CX, Li CJ. Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment. Surf Coat Technol. 2018;347:54.

    CAS  Google Scholar 

  22. Zhang BY, Shi J, Yang GJ, Li CX, Li CJ. Healing of the interface between splashed particles and underlying bulk coating and its influence on isothermal oxidation behavior of LPPS MCrAlY bond coat. J Therm Spray Technol. 2015;24(4):611.

    Google Scholar 

  23. Yang GJ, Xiang XD, Xing LK, Li DJ, Li CJ, Li CX. Isothermal oxidation behavior of NiCoCrAlTaY coating deposited by high velocity air-fuel spraying. J Therm Spray Technol. 2012;21(3–4):391.

    CAS  Google Scholar 

  24. Zhang BY, Meng GH, Yang GJ, Li CX, Li CJ. Dependence of scale thickness on the breaking behavior of the initial oxide on plasma spray bond coat surface during vacuum pre-treatment. Appl Surf Sci. 2017;397:125.

    CAS  Google Scholar 

  25. Zhang BY, Yang GJ, Li CX, Li CJ. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat. Appl Surf Sci. 2017;406:99.

    CAS  Google Scholar 

  26. Meng GH, Liu H, Liu MJ, Xu T, Yang GJ, Li CX, Li CJ. Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content. Surf Coat Technol. 2019;368:192.

    CAS  Google Scholar 

  27. Meng GH, Liu H, Liu MJ, Xu T, Yang GJ, Li CX, Li CJ. Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment. Corros Sci. 2020;163:108275.

    Google Scholar 

  28. Wei ZY, Cai HN, Li CJ. Comprehensive dynamic failure mechanism of thermal barrier coatings based on a novel crack propagation and TGO growth coupling model. Ceram Int. 2018;44(18):22556.

    CAS  Google Scholar 

  29. Wei ZY, Cai HN, Tahir A, Zhang WW, Li XF, Zhang Y, Huang YP, Liu Y. Stress states in plasma-sprayed thermal barrier coatings upon temperature cycling: combined effects of creep, plastic deformation, and TGO growth. Ceram Int. 2019;45(16):19829.

    CAS  Google Scholar 

  30. Huang H, Liu C, Ni LY, Zhou CG. Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy. Rare Met. 2011;30(1):643.

    CAS  Google Scholar 

  31. Li GR, Lv BW, Yang GJ, Zhang WX, Li CX, Li CJ. Relationship between lamellar structure and elastic modulus of thermally sprayed thermal barrier coatings with intra-splat cracks. J Therm Spray Technol. 2015;24(8):1355.

    CAS  Google Scholar 

  32. Zhang WW, Li GR, Zhang Q, Yang GJ. Multiscale pores in TBCs for lower thermal conductivity. J Therm Spray Technol. 2017;26(6):1183.

    Google Scholar 

  33. Yang GJ, Li CJ, Li CX, Kondoh K, Ohmori A. Improvement of adhesion and cohesion in plasma-sprayed ceramic coatings by heterogeneous modification of nonbonded lamellar interface using high strength adhesive infiltration. J Therm Spray Technol. 2013;22(1):36.

    Google Scholar 

  34. Liang SJ, Song HH, Zheng L, Guo HB. Cyclic oxidation behavior of electron beam physical vapor deposition NiAlHf and NiAlHfCrSi coatings at 1150 °C. Rare Met. 2017. https://doi.org/10.1007/s12598-016-0839-8.

    Article  Google Scholar 

  35. Sun JY, Pei YL, Li SS, Zhang H, Gong SK. Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades. Rare Met. 2017;36(7):556.

    CAS  Google Scholar 

  36. Yu ZY, Wei LL, Guo XY, Zhang BP, He Q, Guo HB. Microstructural evolution, mechanical properties and degradation mechanism of PS-PVD quasi-columnar thermal barrier coatings exposed to glassy CMAS deposits. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1128-5.

    Article  Google Scholar 

  37. Deng ZQ, Mao J, Liu M, Deng CM, Ma JT. Regional characteristic of 7YSZ coatings prepared by plasma spray-physical vapor deposition technique. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1041-y.

    Article  Google Scholar 

  38. Chen QY, Peng XZ, Yang GJ, Li CX, Li CJ. Characterization of plasma jet in plasma spray-physical vapor deposition of YSZ using a < 80 kW shrouded torch based on optical emission spectroscopy. J Therm Spray Technol. 2015;24(6):1038.

    CAS  Google Scholar 

  39. Tingaud O, Grimaud A, Denoirjean A, Montavon G, Rat V, Coudert JF, Fauchais P, Chartier T. Suspension plasma-sprayed alumina coating structures: operating parameters versus coating architecture. J Therm Spray Technol. 2008;17(5–6):662.

    CAS  Google Scholar 

  40. Zhou BY, Fan SJ, Fan YC, Zheng Q, Zhang X, Jiang W, Wang LJ. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01306-2.

    Article  Google Scholar 

  41. Liu MJ, Zhang M, Zhang Q, Yang GJ, Li CX, Li CJ. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process. Appl Surf Sci. 2018;428:877.

    CAS  Google Scholar 

  42. Liu MJ, Zhang KJ, Zhang Q, Zhang M, Yang GJ, Li CX, Li CJ. Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition. Appl Surf Sci. 2019;471:950.

    CAS  Google Scholar 

  43. Liu MJ, Zhang M, Zhang XF, Li GR, Zhang Q, Li CX, Li CJ, Yang GJ. Transport and deposition behaviors of vapor coating materials in plasma spray-physical vapor deposition. Appl Surf Sci. 2019;486:80.

    CAS  Google Scholar 

  44. Yang GJ, Li CX, Hao S, Xing YZ, Yang EJ, Li CJ. Critical bonding temperature for the splat bonding formation during plasma spraying of ceramic materials. Surf Coat Technol. 2013;235:841.

    CAS  Google Scholar 

  45. Gao PH, Yang GJ, Cao ST, Li JP, Yang Z, Guo YC. Heredity and variation of hollow structure from powders to coatings through atmospheric plasma spraying. Surf Coat Technol. 2016;305:76.

    CAS  Google Scholar 

  46. Yang GJ, Li CX, Li CJ. Characterization of nonmelted particles and molten splats in plasma-sprayed Al2O3 coatings by a combination of scanning electron microscopy, X-ray diffraction analysis, and confocal raman analysis. J Therm Spray Technol. 2013;22(2–3):131.

    CAS  Google Scholar 

  47. Zhang X, Kulczyk-Malecka J, Carr J, Xiao P, Withers PJ. 3D characterization of porosity in an air plasma-sprayed thermal barrier coating and its effect on thermal conductivity. J Am Ceram Soc. 2018;101(6):2482.

    CAS  Google Scholar 

  48. Chen L, Yang GJ, Li CX, Li CJ. Hierarchical formation of intrasplat cracks in thermal spray ceramic coatings. J Therm Spray Technol. 2016;25(5):959.

    Google Scholar 

  49. Chen L, Yang GJ. Anomalous epitaxial growth in thermally sprayed YSZ and LZ splats. J Therm Spray Technol. 2017;26(6):1168.

    CAS  Google Scholar 

  50. Chen L, Gao LL, Yang GJ. Imaging slit pores under delaminated splats by white light interference. J Therm Spray Technol. 2018;27(3):319.

    Google Scholar 

  51. Li CJ, Ohmori A. Relationships between the microstructure and properties of thermally sprayed deposits. J Therm Spray Technol. 2002;11(3):365.

    CAS  Google Scholar 

  52. Chen L, Yang GJ, Li CX. Formation of lamellar pores for splats via interfacial or sub-interfacial delamination at chemically bonded region. J Therm Spray Technol. 2017;26(3):315.

    CAS  Google Scholar 

  53. Cernuschi F, Golosnoy I, Bison P, Moscatelli A, Vassen R, Bossmann H, Capelli S. Microstructural characterization of porous thermal barrier coatings by IR gas porosimetry and sintering forecasts. Acta Mater. 2013;61(1):248.

    CAS  Google Scholar 

  54. Chen L, Yang GJ, Li CX, Li CJ. Edge effect on crack patterns in thermally sprayed ceramic splats. J Therm Spray Technol. 2017;26(3):302.

    Google Scholar 

  55. Golosnoy I, Cipitria A, Clyne T. Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol. 2009;18(5–6):809.

    Google Scholar 

  56. Cernuschi F, Ahmaniemi S, Vuoristo P, Mäntylä T. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. J Eur Ceram Soc. 2004;24(9):2657.

    CAS  Google Scholar 

  57. Xie H, Xie YC, Yang GJ, Li CX, Li CJ. Modeling thermal conductivity of thermally sprayed coatings with intrasplat cracks. J Therm Spray Technol. 2013;22(8):1328.

    Google Scholar 

  58. Pia G, Casnedi L, Sanna U. Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: experimental findings and model predictions. Ceram Int. 2016;42(5):5802.

    CAS  Google Scholar 

  59. Kulkarni A, Wang Z, Nakamura T, Sampath S, Goland A, Herman H, Allen J, Ilavsky J, Long G, Frahm J. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings. Acta Mater. 2003;51(9):2457.

    CAS  Google Scholar 

  60. Chi WG, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J Am Ceram Soc. 2008;91(8):2636.

    CAS  Google Scholar 

  61. Neuer G, Steffens H, Brandl W, Babiak Z, Brandt R. Some aspects of properties design of plasma-sprayed thermal barrier coatings. Powder Metall Int. 1991;23(2):108.

    CAS  Google Scholar 

  62. Nakamichi M, Takabatake T, Kawamura H. Material design of ceramic coating by plasma spray method. Fusion Eng Des. 1998;41(1–4):143.

    CAS  Google Scholar 

  63. Bertrand G, Bertrand P, Roy P, Rio C, Mevrel R. Low conductivity plasma sprayed thermal barrier coating using hollow psz spheres: correlation between thermophysical properties and microstructure. Surf Coat Technol. 2008;202(10):1994.

    CAS  Google Scholar 

  64. Schwingel D, Taylor R, Haubold T, Wigren J, Gualco C. Mechanical and thermophysical properties of thick PYSZ thermal barrier coatings: correlation with microstructure and spraying parameters. Surf Coat Technol. 1998;108–109:99.

    Google Scholar 

  65. Hasselman D. Effect of cracks on thermal conductivity. J Compos Mater. 1978;12(4):403.

    Google Scholar 

  66. Cernuschi F, Bianchi P, Leoni M, Scardi P. Thermal diffusivity/microstructure relationship in Y-PSZ thermal barrier coatings. J Therm Spray Technol. 1999;8(1):102.

    CAS  Google Scholar 

  67. Lu TJ, Levi CG, Wadley HN, Evans AG. Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J Am Ceram Soc. 2001;84(12):2937.

    CAS  Google Scholar 

  68. Dutton R, Wheeler R, Ravichandran K, An K. Effect of heat treatment on the thermal conductivity of plasma-sprayed thermal barrier coatings. J Therm Spray Technol. 2000;9(2):204.

    CAS  Google Scholar 

  69. Sevostianov I, Kachanov M. Elastic and conductive properties of plasma-sprayed ceramic coatings in relation to their microstructure: an overview. J Therm Spray Technol. 2009;18(5–6):822.

    CAS  Google Scholar 

  70. Clarke DR. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol. 2003;163–164:67.

    Google Scholar 

  71. Wang L, Wang Y, Sun X, He J, Pan Z, Zhou Y, Wu P. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater Des. 2011;32(1):36.

    Google Scholar 

  72. Winter MR, Clarke DR. Oxide materials with low thermal conductivity. J Am Ceram Soc. 2007;90(2):533.

    CAS  Google Scholar 

  73. Tsipas S. Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. J Eur Ceram Soc. 2010;30(1):61.

    CAS  Google Scholar 

  74. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.

    CAS  Google Scholar 

  75. Mu RD. Thermal insulation properties of thermal barrier coatings. Beijing: Beihang University; 2007. 50.

    Google Scholar 

  76. Gadow R, Lischka M. Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications—materials and process development. Surf Coat Technol. 2002;151–152:392.

    Google Scholar 

  77. Antou G, Hlawka F, Cornet A, Becker C, Ruch D, Riche A. In situ laser remelted thermal barrier coatings: thermophysical properties. Surf Coat Technol. 2006;200(20–21):6062.

    CAS  Google Scholar 

  78. Thibblin A, Jonsson S, Olofsson U. Influence of microstructure on thermal cycling lifetime and thermal insulation properties of yttria-stabilized zirconia thermal barrier coatings for diesel engine applications. Surf Coat Technol. 2018;350:1.

    CAS  Google Scholar 

  79. Lv BW, Fan XL, Li DJ, Wang T. Towards enhanced sintering resistance: air-plasma-sprayed thermal barrier coating system with porosity gradient. J Eur Ceram Soc. 2018;38(4):1946.

    CAS  Google Scholar 

  80. Jordan EH, Jiang C, Roth J, Gell M. Low thermal conductivity yttria-stabilized zirconia thermal barrier coatings using the solution precursor plasma spray process. J Therm Spray Technol. 2014;23(5):849.

    CAS  Google Scholar 

  81. Gu S, Lu T, Hass D, Wadley H. Thermal conductivity of zirconia coatings with zig-zag pore microstructures. Acta Mater. 2001;49(13):2539.

    CAS  Google Scholar 

  82. Lughi V, Tolpygo VK, Clarke DR. Microstructural aspects of the sintering of thermal barrier coatings. Mater Sci Eng, A. 2004;368(1–2):212.

    Google Scholar 

  83. Terasaka S, Matsubara H, Shirato T, Kamitakahara M, Yokoi T, Yamaguchi N, Kim BN. Experimental and computational study on sintering of ceramic coating layers with complex porous structures. J Am Ceram Soc. 2019. https://doi.org/10.1111/jace.16822.

    Article  Google Scholar 

  84. Nozahic F, Estournès C, Carabat AL, Sloof WG, Van Der Zwaag S, Monceau D. Self-healing thermal barrier coating systems fabricated by spark plasma sintering. Mater Des. 2018;143:204.

    CAS  Google Scholar 

  85. Suneesh E, Sivapragash M. Behaviour of micro- and  nano-alumina-reinforced Mg–3Zn–0.7Zr–1Cu alloy composites processed at different sintering temperatures. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01281-8.

    Article  Google Scholar 

  86. Yang GJ, Chen ZL, Li CX, Li CJ. Microstructural and mechanical property evolutions of plasma-sprayed YSZ coating during high-temperature exposure: comparison study between 8YSZ and 20YSZ. J Therm Spray Technol. 2013;22(8):1294.

    CAS  Google Scholar 

  87. Li GR, Xie H, Yang GJ. Scale-progressive healing mechanism dominating the ultrafast initial sintering kinetics of plasma-sprayed thermal barrier coatings. Ceram Int. 2018;44(14):16732.

    CAS  Google Scholar 

  88. Li GR, Yang GJ. Scale-progressive sintering mechanism and multi-dimensional structure design of thermal barrier coatings. Adv Ceram. 2018;39(5):321.

    Google Scholar 

  89. Aranke O, Gupta M, Markocsan N, Li XH, Kjellman B. Microstructural evolution and sintering of suspension plasma-sprayed columnar thermal barrier coatings. J Therm Spray Technol. 2019;28(1–2):198.

    Google Scholar 

  90. Choi SR, Zhu DM, Miller RA. Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings. J Am Ceram Soc. 2005;88(10):2859.

    CAS  Google Scholar 

  91. Li GR, Yang GJ, Chen XF, Li CX, Li CJ. Strain/sintering co-induced multiscale structural changes in plasma-sprayed thermal barrier coatings. Ceram Int. 2018;44(12):14408.

    CAS  Google Scholar 

  92. Li GR, Yang GJ, Li CX, Li CJ. Strain-induced multiscale structural changes in lamellar thermal barrier coatings. Ceram Int. 2017;43(2):2252.

    CAS  Google Scholar 

  93. Ahrens M, Vaßen R, Stöver D, Lampenscherf S. Sintering and creep processes in plasma-sprayed thermal barrier coatings. J Therm Spray Technol. 2004;13(3):432.

    CAS  Google Scholar 

  94. Basu D, Funke C, Steinbrech R. Effect of heat treatment on elastic properties of separated thermal barrier coatings. J Mater Res. 1999;14(12):4643.

    CAS  Google Scholar 

  95. Shinozaki M, Clyne T. A methodology, based on sintering-induced stiffening, for prediction of the spallation lifetime of plasma-sprayed coatings. Acta Mater. 2013;61(2):579.

    CAS  Google Scholar 

  96. Ganvir A, Curry N, Björklund S, Markocsan N, Nylén P. Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS). J Therm Spray Technol. 2015;24(7):1195.

    CAS  Google Scholar 

  97. Zhu DM, Miller RA. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J Therm Spray Technol. 2000;9(2):175.

    CAS  Google Scholar 

  98. Clyne T, Gill S. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol. 1996;5(4):401.

    CAS  Google Scholar 

  99. Vaßen R, Czech N, Mallener W, Stamm W, Stöver D. Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour. Surf Coat Technol. 2001;141(2–3):135.

    Google Scholar 

  100. Cernuschi F, Lorenzoni L, Ahmaniemi S, Vuoristo P, Mäntylä T. Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. J Eur Ceram Soc. 2005;25(4):393.

    CAS  Google Scholar 

  101. Kulkarni A, Vaidya A, Goland A, Sampath S, Herman H. Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings. Mater Sci Eng, A. 2003;359(1–2):100.

    Google Scholar 

  102. Matsumoto M, Yamaguchi N, Matsubara H. Low thermal conductivity and high temperature stability of ZrO2–Y2O3–La2O3 coatings produced by electron beam PVD. Scripta Mater. 2004;50(6):867.

    CAS  Google Scholar 

  103. Thompson J, Clyne T. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Mater. 2001;49(9):1565.

    CAS  Google Scholar 

  104. Yuan T, He Q, Lv YF, Zou H. High temperature stability and thermal cycling life of plasma sprayed nanostructured thermal barrier coating with low impurity content. In: 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). New York; 2018. 120.

  105. Paul S, Cipitria A, Golosnoy I, Xie L, Dorfman M, Clyne T. Effects of impurity content on the sintering characteristics of plasma-sprayed zirconia. J Therm Spray Technol. 2007;16(5–6):798.

    CAS  Google Scholar 

  106. Matsui K, Ohmichi N, Ohgai M, Enomoto N, Hojo J. Sintering kinetics at constant rates of heating: effect of Al2O3 on the initial sintering stage of fine zirconia powder. J Am Ceram Soc. 2005;88(12):3346.

    CAS  Google Scholar 

  107. Xie L, Dorfman M, Cipitria A, Paul S, Golosnoy I, Clyne T. Properties and performance of high-purity thermal barrier coatings. J Therm Spray Technol. 2007;16(5–6):804.

    CAS  Google Scholar 

  108. Liu LY, Shankar R, Howard P. High sintering resistance of a novel thermal barrier coating. Surf Coat Technol. 2010;204(20):3154.

    CAS  Google Scholar 

  109. Zhu DM, Miller RA. Development of advanced low conductivity thermal barrier coatings. Int J Appl Ceram Technol. 2004;1(1):86.

    CAS  Google Scholar 

  110. Rahaman M, Manalert R. Grain boundary mobility of BaTiO3 doped with aliovalent cations. J Eur Ceram Soc. 1998;18(8):1063.

    CAS  Google Scholar 

  111. Siebert B, Funke C, Vaβen R, Stöver D. Changes in porosity and young’s modulus due to sintering of plasma sprayed thermal barrier coatings. J Mater Process Technol. 1999;92–93:217.

    Google Scholar 

  112. Maloney MJ. Thermal barrier coating systems and materials. US Patent; 6117560. 2000.

  113. Curry N, Donoghue J. Evolution of thermal conductivity of dysprosia stabilised thermal barrier coating systems during heat treatment. Surf Coat Technol. 2012;209:38.

    CAS  Google Scholar 

  114. Curry N, Markocsan N, Östergren L, Li XH, Dorfman M. Evaluation of the lifetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems. J Therm Spray Technol. 2013;22(6):864.

    CAS  Google Scholar 

  115. Cao X, Vassen R, Tietz F, Stoever D. New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides. J Eur Ceram Soc. 2006;26(3):247.

    CAS  Google Scholar 

  116. Vassen R, Traeger F, Stöver D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems. Int J Appl Ceram Technol. 2004;1(4):351.

    CAS  Google Scholar 

  117. Racek O, Berndt CC, Guru D, Heberlein J. Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques. Surf Coat Technol. 2006;201(1–2):338.

    CAS  Google Scholar 

  118. Lima RS, Marple BR. Toward highly sintering-resistant nanostructured ZrO2-7 wt% Y2O3 coatings for TBC applications by employing differential sintering. J Therm Spray Technol. 2008;17(5–6):846.

    CAS  Google Scholar 

  119. Zhang WW, Li GR, Zhang Q, Yang GJ, Zhang GW, Mu HM. Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process. J Mater Sci Technol. 2018;34(8):1293.

    Google Scholar 

  120. Kumar V, Balasubramanian K. Progress update on failure mechanisms of advanced thermal barrier coatings: a review. Prog Org Coat. 2016;90:54.

    CAS  Google Scholar 

  121. Li GR, Yang GJ. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure. J Mater Sci Technol. 2019;35(3):231.

    Google Scholar 

  122. Li GR, Yang GJ, Li CX, Li CJ. Sintering characteristics of plasma-sprayed TBCs: experimental analysis and an overall modelling. Ceram Int. 2018;44(3):2982.

    CAS  Google Scholar 

  123. Medřický J, Curry N, Pala Z, Vilemova M, Chraska T, Johansson J, Markocsan N. Optimization of high porosity thermal barrier coatings generated with a porosity former. J Therm Spray Technol. 2015;24(4):622.

    Google Scholar 

  124. Pan WP, Lü Z, Chen KF, Huang XQ, Wei B, Li WY, Wang ZH, Su WH. Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell. Electrochim Acta. 2010;55(20):5538.

    CAS  Google Scholar 

  125. Novais RM, Seabra M, Labrincha J. Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents. Ceram Int. 2014;40(8):11637.

    CAS  Google Scholar 

  126. Arai M, Ochiai H, Suidzu T. A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores. Surf Coat Technol. 2016;285:120.

    CAS  Google Scholar 

  127. Hardwicke CU, Lau YC. Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol. 2013;22(5):564.

    Google Scholar 

  128. Cuglietta M, Kuhn J, Kesler O. A novel hybrid axial-radial atmospheric plasma spraying technique for the fabrication of solid oxide fuel cell anodes containing Cu Co, Ni, and Samaria-Doped Ceria. J Therm Spray Technol. 2013;22(5):609.

    CAS  Google Scholar 

  129. Metcalfe C, Harris J, Kuhn J, Marr M, Kesler O. Progress in metal-supported axial-injection plasma sprayed solid oxide fuel cells using nanostructured NiO-Y0.15Zr0.85O1.925 dry powder anode feedstock. J Therm Spray Technol. 2013;22(5):599.

    CAS  Google Scholar 

  130. Clemmer RM, Corbin SF. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes. Solid State Ionics. 2004;166(3–4):251.

    CAS  Google Scholar 

  131. Sanson A, Pinasco P, Roncari E. Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs. J Eur Ceram Soc. 2008;28(6):1221.

    CAS  Google Scholar 

  132. Corbin SF, Apté PS. Engineered porosity via tape casting, lamination and the percolation of pyrolyzable particulates. J Am Ceram Soc. 1999;82(7):1693.

    CAS  Google Scholar 

  133. Hu J, Lü Z, Chen K, Huang X, Ai N, Du X, Fu C, Wang J, Su W. Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs. J Membr Sci. 2008;318(1–2):445.

    CAS  Google Scholar 

  134. Hammel E, Ighodaro O-R, Okoli O. Processing and properties of advanced porous ceramics: an application based review. Ceram Int. 2014;40(10):15351.

    CAS  Google Scholar 

  135. Chen B, Yang GJ, Li CJ, Li CX. Preparation of hierarchical porous metallic materials via deposition of microporous particles. Mater Lett. 2016;176:237.

    CAS  Google Scholar 

  136. Poon M, Kesler O. The influence of pore formers on the microstructure of plasma-sprayed NiO–YSZ anodes. J Power Sources. 2012;210:204.

    CAS  Google Scholar 

  137. Dees D, Claar TD, Easler T, Fee D, Mrazek F. Conductivity of porous Ni/ZrO2-Y2O3 cermets. J Electrochem Soc. 1987;134(9):2141.

    CAS  Google Scholar 

  138. Zhang WW, Li GR, Zhang Q, Yang GJ, Zhang GW, Mu HM. Self-enhancing thermal insulation performance of bimodal-structured thermal barrier coating. J Therm Spray Technol. 2018;27(7):1064.

    Google Scholar 

  139. Li GR, Yang GJ, Li CX, Li CJ. Stage-sensitive microstructural evolution of nanostructured TBCs during thermal exposure. J Eur Ceram Soc. 2018;38(9):3325.

    CAS  Google Scholar 

  140. Li GR, Yang GJ, Li CX, Li CJ. A comprehensive mechanism for the sintering of plasma-sprayed nanostructured thermal barrier coatings. Ceram Int. 2017;43(13):9600.

    CAS  Google Scholar 

  141. Lima RS, Marple BR. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol. 2007;16(1):40.

    CAS  Google Scholar 

  142. Wu J, Guo HB, Zhou L, Wang L, Gong SK. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ. J Therm Spray Technol. 2010;19(6):1186.

    CAS  Google Scholar 

  143. Fauchais P, Montavon G, Vardelle M, Cedelle J. Developments in direct current plasma spraying. Surf Coat Technol. 2006;201(5):1908.

    CAS  Google Scholar 

  144. Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann-Ténèze K. Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol. 2008;17(1):31.

    CAS  Google Scholar 

  145. Heszler P, Landström L, Granqvist CG. Laser-induced synthesis of nanostructured thin films. Appl Surf Sci. 2007;253(19):8292.

    CAS  Google Scholar 

  146. Ostrikov K, Long J, Rutkevych P, Xu S. Synthesis of functional nanoassemblies in reactive plasmas. Vacuum. 2006;80(11–12):1126.

    CAS  Google Scholar 

  147. Pawlowski L. Finely grained nanometric and submicrometric coatings by thermal spraying: a review. Surf Coat Technol. 2008;202(18):4318.

    CAS  Google Scholar 

  148. Jiang CY, Feng M, Yu CT, Bao ZB, Zhu SL, Wang FH. Thermal cycling behavior of nanostructured and conventional yttria-stabilized zirconia thermal barrier coatings via air plasma spray. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01319-x.

    Article  Google Scholar 

  149. Fauchais P, Montavon G, Lima R, Marple B. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys. 2011;44(9):093001.

    Google Scholar 

  150. Lohia A, Sivakumar G, Ramakrishna M, Joshi S. Deposition of nanocomposite coatings employing a hybrid APS + SPPS technique. J Therm Spray Technol. 2014;23(7):1054.

    CAS  Google Scholar 

  151. Soltani R, Garcia E, Coyle TW, Mostaghimi J, Lima R, Marple B, Moreau C. Thermomechanical behavior of nanostructured plasma sprayed zirconia coatings. J Therm Spray Technol. 2006;15(4):657.

    CAS  Google Scholar 

  152. Hurevich V, Smurov I, Pawlowski L. Theoretical study of the powder behavior of porous particles in a flame during plasma spraying. Surf Coat Technol. 2002;151–152:370.

    Google Scholar 

  153. Yang DM, Gao Y, Liu HJ, Sun CQ. Thermal shock resistance of bimodal structured thermal barrier coatings by atmospheric plasma spraying using nanostructured partially stabilized zirconia. Surf Coat Technol. 2017;315:9.

    CAS  Google Scholar 

  154. Liang L, Wei H, Chang X, Xu W, Li X, Wei Y. Enhanced insulation temperature and the reduced thermal conductivity of nanostructured ceramic coating systems. Int J Heat Mass Transfer. 2013;65:219.

    CAS  Google Scholar 

  155. Lamuta C, Di Girolamo G, Pagnotta L. Microstructural, mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters. Ceram Int. 2015;41(7):8904.

    CAS  Google Scholar 

  156. Chen D, Luo F, Lou X, Qing Y, Zhou W, Zhu D. Comparison of thermal insulation capability between conventional and nanostructured plasma sprayed YSZ coating on Ni3Al substrates. Ceram Int. 2017;43(5):4324.

    CAS  Google Scholar 

  157. Keyvani A, Saremi M, Sohi MH, Valefi Z. A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling. J Alloys Compd. 2012;541:488.

    CAS  Google Scholar 

  158. Gao Y, Zhao Y, Yang DM, Gao JY. A novel plasma-sprayed nanostructured coating with agglomerated-unsintered feedstock. J Therm Spray Technol. 2016;25(1–2):291.

    CAS  Google Scholar 

  159. Pourbafrani M, Razavi RS, Bakhshi S, Loghman-Estarki M, Jamali H. Effect of microstructure and phase of nanostructured YSZ thermal barrier coatings on its thermal shock behaviour. Surf Eng. 2015;31(1):64.

    Google Scholar 

  160. Loghman-Estarki M, Razavi RS, Edris H, Bakhshi S, Nejati M, Jamali H. Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings. Ceram Int. 2016;42(6):7432.

    CAS  Google Scholar 

  161. Jamali H, Mozafarinia R, Shoja-Razavi R, Ahmadi-Pidani R. Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate. J Eur Ceram Soc. 2014;34(2):485.

    CAS  Google Scholar 

  162. Jin L, Zhou HB, Huang ZZ, Zhang T, Zhi Y. Preparing and anticorrosion properties of Fe and Al-based amorphous coatings. Chin J Rare Met. 2019;43(12):1316.

    Google Scholar 

  163. Qiao HN, Yang CL, Yin H, Hu YY, Ou MG. Luminescent properties of Gd2O3: Tb3+ nanoparticle by polyol method. Chin J Rare Met. 2019;43(1):81.

    Google Scholar 

  164. Wu ZL, Ni LY, Yu QH, Zhou CG. Effect of thermal exposure on mechanical properties of a plasma-sprayed nanostructured thermal barrier coating. J Therm Spray Technol. 2012;21(1):169.

    CAS  Google Scholar 

  165. Karthikeyan J, Berndt C, Tikkanen J, Reddy S, Herman H. Plasma spray synthesis of nanomaterial powders and deposits. Mater Sci Eng, A. 1997;238(2):275.

    Google Scholar 

  166. Du LZ, Coyle TW, Chien K, Pershin L, Li T, Golozar M. Titanium dioxide coating prepared by use of a suspension-solution plasma-spray process. J Therm Spray Technol. 2015;24(6):915.

    CAS  Google Scholar 

  167. Fan W, Bai Y. Review of suspension and solution precursor plasma sprayed thermal barrier coatings. Ceram Int. 2016;42(13):14299.

    CAS  Google Scholar 

  168. Gell M, Jordan EH, Teicholz M, Cetegen BM, Padture NP, Xie L, Chen D, Ma X, Roth J. Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol. 2008;17(1):124.

    CAS  Google Scholar 

  169. Brinley E, Babu K, Seal S. The solution precursor plasma spray processing of nanomaterials. JOM. 2007;59(7):54.

    CAS  Google Scholar 

  170. Kassner H, Siegert R, Hathiramani D, Vassen R, Stoever D. Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol. 2008;17(1):115.

    CAS  Google Scholar 

  171. Xiong HB, Lin JZ. Nanoparticles modeling in axially injection suspension plasma spray of zirconia and alumina ceramics. J Therm Spray Technol. 2009;18(5–6):887.

    CAS  Google Scholar 

  172. Killinger A, Gadow R, Mauer G, Guignard A, Vaßen R, Stöver D. Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol. 2011;20(4):677.

    Google Scholar 

  173. Kozerski S, Łatka L, Pawlowski L, Cernuschi F, Petit F, Pierlot C, Podlesak H, Laval JP. Preliminary study on suspension plasma sprayed ZrO2 + 8 wt% Y2O3 coatings. J Eur Ceram Soc. 2011;31(12):2089.

    CAS  Google Scholar 

  174. VanEvery K, Krane MJM, Trice RW. Parametric study of suspension plasma spray processing parameters on coating microstructures manufactured from nanoscale yttria-stabilized zirconia. Surf Coat Technol. 2012;206(8–9):2464.

    CAS  Google Scholar 

  175. Sokołowski P, Pawłowski L, Dietrich D, Lampke T, Jech D. Advanced microscopic study of suspension plasma-sprayed zirconia coatings with different microstructures. J Therm Spray Technol. 2016;25(1–2):94.

    Google Scholar 

  176. Moign A, Vardelle A, Themelis N, Legoux J. Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol. 2010;205(2):668.

    CAS  Google Scholar 

  177. Gan JA, Berndt CC. Nanocomposite coatings: thermal spray processing, microstructure and performance. Int Mater Rev. 2015;60(4):195.

    CAS  Google Scholar 

  178. Jordan EH, Jiang C, Gell M. The solution precursor plasma spray (SPPS) process: a review with energy considerations. J Therm Spray Technol. 2015;24(7):1153.

    CAS  Google Scholar 

  179. Chen H, Lee SW, Du H, Ding CX, Choi CH. Influence of feedstock and spraying parameters on the depositing efficiency and microhardness of plasma-sprayed zirconia coatings. Mater Lett. 2004;58(7–8):1241.

    CAS  Google Scholar 

  180. Ganvir A, Curry N, Govindarajan S, Markocsan N. Characterization of thermal barrier coatings produced by various thermal spray techniques using solid powder, suspension, and solution precursor feedstock material. Int J Appl Ceram Technol. 2016;13(2):324.

    CAS  Google Scholar 

  181. Skoog A, Murphy J, Tomlinson T. Method for applying a plasma sprayed coating using liquid injection. US Patent; 20060222777A1. 2006.

  182. Cipri F, Marra F, Pulci G, Tirillò J, Bartuli C, Valente T. Plasma sprayed composite coatings obtained by liquid injection of secondary phases. Surf Coat Technol. 2009;203(15):2116.

    CAS  Google Scholar 

  183. Mohanty P, Roche A, Guduru R, Varadaraajan V. Ultrafine particulate dispersed high-temperature coatings by hybrid spray process. J Therm Spray Technol. 2010;19(1–2):484.

    CAS  Google Scholar 

  184. Cuglietta M. The fabrication of direct oxidation solid oxide fuel cell anodes using atmospheric plasma spraying. Toronto: University of Toronto; 2013. p. p20.

    Google Scholar 

  185. Joshi SV, Sivakumar G. Hybrid processing with powders and solutions: A novel approach to deposit composite coatings. J Therm Spray Technol. 2015;24(7):1166.

    CAS  Google Scholar 

  186. Ozturk A, Cetegen BM. Modeling of plasma assisted formation of precipitates in zirconium containing liquid precursor droplets. Mater Sci Eng, A. 2004;384(1–2):331.

    Google Scholar 

  187. Rampon R, Filiatre C, Bertrand G. Suspension plasma spraying of YPSZ coatings: suspension atomization and injection. J Therm Spray Technol. 2008;17(1):105.

    CAS  Google Scholar 

  188. Podlesak H, Pawlowski L, Laureyns J, Jaworski R, Lampke T. Advanced microstructural study of suspension plasma sprayed titanium oxide coatings. Surf Coat Technol. 2008;202(15):3723.

    CAS  Google Scholar 

  189. Jabbari F, Jadidi M, Wuthrich R, Dolatabadi A. A numerical study of suspension injection in plasma-spraying process. J Therm Spray Technol. 2014;23(1–2):3.

    Google Scholar 

  190. Fazilleau J, Delbos C, Rat V, Coudert J-F, Fauchais P, Pateyron B. Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior. Plasma Chem Plasma Process. 2006;26(4):371.

    CAS  Google Scholar 

  191. Jamali H, Mozafarinia R, Shoja Razavi R, Ahmadi-Pidani R, Reza Loghman-Estarki M. Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr Nanosci. 2012;8(3):402.

    CAS  Google Scholar 

  192. Goberman D, Sohn Y, Shaw L, Jordan E, Gell M. Microstructure development of Al2O3–13 wt% TiO2 plasma sprayed coatings derived from nanocrystalline powders. Acta Mater. 2002;50(5):1141.

    CAS  Google Scholar 

  193. Xie LD, Ma XQ, Jordan EH, Padture NP, Xiao DT, Gell M. Deposition of thermal barrier coatings using the solution precursor plasma spray process. J Mater Sci. 2004;39(5):1639.

    CAS  Google Scholar 

  194. Chen DY, Jordan EH, Gell M. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf Coat Technol. 2008;202(10):2132.

    CAS  Google Scholar 

  195. Cheng B, Zhang YM, Yang N, Zhang M, Chen L, Yang GJ, Li CX, Li CJ. Sintering-induced delamination of thermal barrier coatings by gradient thermal cyclic test. J Am Ceram Soc. 2017;100(5):1820.

    CAS  Google Scholar 

  196. Trice R, Su YJ, Mawdsley J, Faber K, De Arellano-Lopez A, Wang H, Porter W. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J Mater Sci. 2002;37(11):2359.

    CAS  Google Scholar 

  197. Li GR, Cheng B, Yang GJ, Li CX. Strain-induced stiffness-dependent structural changes and the associated failure mechanism in TBCs. J Eur Ceram Soc. 2017;37(11):3609.

    CAS  Google Scholar 

  198. Nicholls JR, Lawson K, Johnstone A, Rickerby D. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol. 2002;151–152:383.

    Google Scholar 

  199. Zhou C, Wang N, Gong S, Xu H. Effect of thermal treatment on thermal diffusivity of nanostructured zirconia coating. J Beijing Univ Aeronaut Astronaut. 2004;30(10):949.

    CAS  Google Scholar 

  200. Limarga AM, Shian S, Baram M, Clarke DR. Effect of high-temperature aging on the thermal conductivity of nanocrystalline tetragonal yttria-stabilized zirconia. Acta Mater. 2012;60(15):5417.

    CAS  Google Scholar 

  201. Li GR, Wang LS, Yang GJ, Li CX, Li CJ. Combined effect of internal and external factors on sintering kinetics of plasma-sprayed thermal barrier coatings. J Eur Ceram Soc. 2019;39(5):1860.

    CAS  Google Scholar 

  202. Li GR, Xie H, Yang GJ, Liu G, Li CX, Li CJ. A comprehensive sintering mechanism for TBCs-part I: an overall evolution with two-stage kinetics. J Am Ceram Soc. 2017;100(5):2176.

    CAS  Google Scholar 

  203. Li GR, Wang LS, Yang GJ. Achieving self-enhanced thermal barrier performance through a novel hybrid-layered coating design. Mater Des. 2019;167:107647.

    Google Scholar 

  204. Zhang L. Mechanism and application of plasma activated sintering processing. Kunming: Kunming University of Science and Technology; 2001. 35.

    Google Scholar 

  205. Tjong S, Chen H. Nanocrystalline materials and coatings. Mater Sci Eng R Rep. 2004;45(1–2):1.

    Google Scholar 

  206. Zhao JA. Preparation of ultrafine zirconia powders. Zhengzhou: Zhengzhou University; 2004. 20.

    Google Scholar 

  207. Matsui K, Matsumoto A, Uehara M, Enomoto N, Hojo J. Sintering kinetics at isothermal shrinkage: effect of specific surface area on the initial sintering stage of fine zirconia powder. J Am Ceram Soc. 2007;90(1):44.

    CAS  Google Scholar 

  208. Wang N, Zhou CG, Gong SK, Xu HB. Heat treatment of nanostructured thermal barrier coating. Ceram Int. 2007;33(6):1075.

    CAS  Google Scholar 

  209. Chraska T, King AH, Berndt CC. On the size-dependent phase transformation in nanoparticulate zirconia. Mater Sci Eng, A. 2000;286(1):169.

    Google Scholar 

  210. Penn RL, Banfield JF. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim Cosmochim Acta. 1999;63(10):1549.

    CAS  Google Scholar 

  211. Leite E, Giraldi T, Pontes F, Longo E, Beltran A, Andres J. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl Phys Lett. 2003;83(8):1566.

    CAS  Google Scholar 

  212. Chen SG, Yin YS, Wang DP, Wang X. Effect of nanocrystallite structure on the lower activation energy for Sm2O3-doped ZrO2. J Mol Struct. 2004;703(1–3):19.

    CAS  Google Scholar 

  213. Nieh T, Wadsworth J. Superelastic behaviour of a fine-grained, yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP). Acta Metall Mater. 1990;38(6):1121.

    CAS  Google Scholar 

  214. Li GR, Xie H, Yang GJ, Liu G, Li CX, Li CJ. A comprehensive sintering mechanism for TBCs-part II: multiscale multipoint interconnection-enhanced initial kinetics. J Am Ceram Soc. 2017;100(9):4240.

    CAS  Google Scholar 

  215. Li GR, Yang GJ, Li CX, Li CJ. A comprehensive sintering mechanism for thermal barrier coatings-part III: substrate constraint effect on healing of 2D pores. J Am Ceram Soc. 2018;101(8):3636.

    CAS  Google Scholar 

  216. Cernuschi F, Bison P, Marinetti S, Scardi P. Thermophysical, mechanical and microstructural characterization of aged free-standing plasma-sprayed zirconia coatings. Acta Mater. 2008;56(16):4477.

    CAS  Google Scholar 

  217. Khan AN, Lu J. Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates. Surf Coat Technol. 2007;201(8):4653.

    CAS  Google Scholar 

  218. Li GR, Wang LS, Yang GJ. A novel composite-layered coating enabling self-enhancing thermal barrier performance. Scripta Mater. 2019;163:142.

    CAS  Google Scholar 

  219. Li GR, Lei J, Yang GJ, Li CX, Li CJ. Substrate-constrained effect on the stiffening behavior of lamellar thermal barrier coatings. J Eur Ceram Soc. 2018;38(6):2579.

    CAS  Google Scholar 

  220. Li GR, Wang LS. Durable TBCs with self-enhanced thermal insulation based on co-design on macro-and microstructure. Appl Surf Sci. 2019;483:472.

    CAS  Google Scholar 

  221. Gurrappa I, Rao AS. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf Coat Technol. 2006;201(6):3016.

    CAS  Google Scholar 

  222. Mahade S, Curry N, Jonnalagadda KP, Peng RL, Markocsan N, Nylén P. Influence of YSZ layer thickness on the durability of gadolinium zirconate/YSZ double-layered thermal barrier coatings produced by suspension plasma spray. Surf Coat Technol. 2019;357:456.

    CAS  Google Scholar 

  223. Li GR, Wang LS, Zhang WW, Yang GJ, Chen XF, Zhang WX. Tailoring degradation-resistant thermal barrier coatings based on the orientation of spontaneously formed pores: from retardation to self-improvement. Compos B Eng. 2020;181:107567.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Basic Research Program of Shaanxi (No. 2019JQ-380) and the Fundamental Research Funds for the Central Universities, CHD (No. 300102500102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Zhe Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WW., Wei, ZY., Zhang, LY. et al. Low-thermal-conductivity thermal barrier coatings with a multi-scale pore design and sintering resistance following thermal exposure. Rare Met. 39, 352–367 (2020). https://doi.org/10.1007/s12598-020-01393-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01393-6

Keywords

Navigation