Skip to main content
Log in

Post-deposition-annealed lanthanum-doped cerium oxide thin films: structural and electrical properties

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The metal-organic-decomposed lanthanum cerium oxide (LaCeO2) solution was spin-coated on p-type Si substrate to form thin films. The method of microwave-assisted annealing was adopted to modify the surface properties of the deposited thin films. The post-deposition annealing (PDA) at different microwave powers and thermal annealing temperature of 400 °C was performed on LaCeO2 thin films spin-coated on Si. Influence of this PDA on structural and electrical properties of deposited LaCeO2 thin films was studied and compared. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results reveal the great improvement in the structural properties in terms of removal of residual impurities from LaCeO2 films, reduced roughness and improvement in crystalline properties as compared to those of hot-plate-annealed samples. The electrical properties of Al/LaCeO2/Si stack were also studied. The different electrical parameters such as k value, interface trap density (Dit) and effective oxide charges (Qeff) were extracted and found to be improved with the increase in microwave annealing power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang W, Chen J, Zhang Y, Zhang Y, He JH, Fang X. Silicon-compatible photodetectors: Trends to monolithically integrate photosensors with chip technology. Adv Funct Mater. 2019;29(18):1808182.

    Article  Google Scholar 

  2. Lin CH, Cheng B, Li TY, Retamal JRD, Wei TC, Fu HC, Fang X, He JH. Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano. 2019;13(2):1168.

    CAS  Google Scholar 

  3. Xin JZ, Fu CG, Shi WJ, Li GW, Auffermann G, Qi YP, Zhu TJ, Zhao XB, Felser C. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Met. 2018;37(4):274.

    Article  CAS  Google Scholar 

  4. Ouyang W, Teng F, He JH, Fang X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv Funct Mater. 2019;29(9):1807672.

    Article  Google Scholar 

  5. Yang W, Hu K, Teng F, Weng JH, Zhang Y, Fang X. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett. 2018;18(8):4697.

    Article  CAS  Google Scholar 

  6. Dong JC, Han DD, Zhao FL, Zhao NN, Wu J, Liu LF, Kang JF, Wang Y. Semiconductor performance of rare earth gadolinium-doped aluminum–zinc oxide thin film. Rare Met. 2016;35(9):672.

    Article  CAS  Google Scholar 

  7. Green ML, Gusev EP, Degraeve R, Garfunkel EL. Ultrathin (< 4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. J Appl Phys. 2001;90(5):2057.

    Article  CAS  Google Scholar 

  8. Agrawal KS, Patil VS, Khairnar AG, Mahajan AM. HfO2 gate dielectric on Ge (111) with ultrathin nitride interfacial layer formed by rapid thermal NH3 treatment. Appl Surf Sci. 2016;364:747.

    Article  CAS  Google Scholar 

  9. Mahajan AM, Khairnar AG, Thibeault BJ. Electrical properties of MOS capacitors formed by PEALD grown Al2O3 on silicon. Semiconductors. 2014;48(4):514.

    Article  Google Scholar 

  10. Patil VS, Agrawal KS, Khairnar AG, Thibeault BJ, Mahajan AM. Structural and electrical properties of ultra-thin high-k ZrO2 film on nitride passivated Ge (100) prepared by PEALD. Mater Sci Semicond Process. 2016;56:277.

    Article  CAS  Google Scholar 

  11. Agrawal KS, Patil VS, Khairnar AG, Mahajan AM. Preparation of rare earth CeO2 thin films using metal organic decomposition method for metal-oxide–semiconductor capacitors. J Mater Sci Mater Electron. 2017;28(17):12503.

    Article  CAS  Google Scholar 

  12. Fissel A, Czernohorsky M, Osten HJ. Characterization of crystalline rare-earth oxide high-K dielectrics grown by molecular beam epitaxy on silicon carbide. J Vacuum Sci Technol B. 2006;24(4):2115.

    Article  CAS  Google Scholar 

  13. Barhate V, Agrawal K, Patil V, Patil S, Mahajan A. Spectroscopic study of La2O3 thin films deposited by indigenously developed plasma-enhanced atomic layer deposition system. Int J Mod Phys B. 2018;32(19):1840074.

    Article  CAS  Google Scholar 

  14. Niasari MS, Hosseinzadeh G, Davar F. Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J Alloy Compd. 2011;509(10):4098.

    Article  Google Scholar 

  15. Lim WF, Lockman Z, Cheong KY. Metal-oxide-semiconductor characteristics of lanthanum cerium oxide film on Si. Appl Phys A. 2012;107(2):459.

    Article  CAS  Google Scholar 

  16. Nieminen M, Sajavaara T, Rauhala E, Putkonen M, Niinisto L. Surface-controlled growth of LaAlO3 thin films by atomic layer epitaxy. J Mater Chem. 2001;11(9):2340.

    Article  CAS  Google Scholar 

  17. Seo JW, Fompeyrine J, Guiller A, Norga G, Marchiori C, Siegwart H, Locquet JP. Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si. Appl Phys Lett. 2003;83(25):5211.

    Article  CAS  Google Scholar 

  18. Cheng X, Qi Z, Zhang H, Zhang G, Pan G. Growth and interface of amorphous La2Hf2O7/Si thin film. J Rare Earths. 2012;30(2):189.

    Article  CAS  Google Scholar 

  19. Heeg T, Schubert J, Buchal C, Cicerrella E, Freeouf JL, Tian W, Jia Y, Schlom DG. Growth and properties of epitaxial rare-earth scandate thin films. Appl Phys A Mater Sci Process. 2006;83(1):103.

    Article  CAS  Google Scholar 

  20. Khairnar AG, Mahajan AM. Sol–gel deposited ceria thin films as gate dielectric for CMOS technology. Bull Mater Sci. 2013;36(2):259.

    Article  CAS  Google Scholar 

  21. Alonzo-Medina GM, González-González A, Sacedón JL, Oliva AI. Understanding the thermal annealing process on metallic thin films. IOP Conf Ser Mater Sci Eng. 2013;45(1):012013.

    Article  CAS  Google Scholar 

  22. Bykov YV, Rybakov KI, Semenov VE. High-temperature microwave processing of materials. J Phys D Appl Phys. 2001;34(13):R55.

    Article  CAS  Google Scholar 

  23. He Y, Yang B, Cheng G, Pan H. Synthesis of La2O3/BaCO3 nanocatalysts and their catalytic performance. Powder Technol. 2003;134(1–2):52.

    Article  CAS  Google Scholar 

  24. Phani AR, Santucci S. Evaluation of structural and mechanical properties of aluminum oxide thin films deposited by a sol–gel process: Comparison of microwave to conventional anneal. J Non-Cryst Solids. 2006;352(38–39):4093.

    Article  CAS  Google Scholar 

  25. Mitrovic IZ, Hall S. Rare earth silicate formation: A route towards high-k for the 22 nm node and beyond. J Telecommun Inf Technol. 2009;4:51.

    Google Scholar 

  26. Kwon J, Dai M, Halls MD, Langereis E, Chabal YJ, Gordon RG. In situ infrared characterization during atomic layer deposition of lanthanum oxide. J Phys Chem C. 2009;113(2):654.

    Article  CAS  Google Scholar 

  27. Lim WF, Cheong KY, Lockman Z. Effects of post-deposition annealing temperature and time on physical properties of metal-organic decomposed lanthanum cerium oxide thin film. Thin Solid Films. 2011;519(15):5139.

    Article  CAS  Google Scholar 

  28. Kurian M, Kunjachan C. Investigation of size dependency on lattice strain of nanoceria particles synthesised by wet chemical methods. Int Nano Lett. 2014;4(4):73.

    Article  CAS  Google Scholar 

  29. Mote VD, Purushotham Y, Dole BN. Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys. 2012;6(1):6.

    Article  Google Scholar 

  30. Shih TL, Su YH, Kuo TC, Lee WH, Current MI. Effect of microwave annealing on electrical characteristics of TiN/Al/TiN/HfO2/Si MOS capacitors. Appl Phys Lett. 2017;111(1):012101.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Council of Scientific and Industrial Research (CSIR), New Delhi (No. 22(0716)/16/EMR-II) and Special Assistance Programme on Departmental Research Support (SAP-DRS) from University Grant Commission (UGC), New Delhi (No. 503/4/DRS-III/2016-(SAP-I). Authors are grateful to Prof. M. D. Shirsath for providing AFM facility under RUSA scheme and to Microelectronics Department, North China University of Technology, Beijing, China, for providing necessary electrical characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Mahadu Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barhate, V.N., Agrawal, K.S., Patil, V.S. et al. Post-deposition-annealed lanthanum-doped cerium oxide thin films: structural and electrical properties. Rare Met. 40, 1835–1843 (2021). https://doi.org/10.1007/s12598-020-01380-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01380-x

Keywords

Navigation