Skip to main content
Log in

Photoelectrochemical performance of TiO2 nanotube arrays by in situ decoration with different initial states

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Here, carbon dots (CDs) only or nanocomposites of CDs and TiO2 (CDs–TiO2) were used to decorate titanium dioxide nanotube arrays (TiO2NTs) in situ by solvothermal method. Two initial states of TiO2NTs were prepared for contrast, including the amorphous TiO2NTs (TiO2NTs-0) just experienced anodic oxidation process and that further calcined TiO2NTs (TiO2NTs-450). It was found that the newborn CDs or CDs–TiO2 were more likely to anchor on TiO2NTs-0 than the calcined TiO2NTs-450, and more Ti–C bonds were found in the composites which were derived from TiO2NTs-0 after the solvothermal treatment. An evident photocurrent could be demonstrated for either CDs or CDs–TiO2 decorated TiO2NTs once exposed to visible light. And CDs–TiO2NTs-0 showed the highest photocurrent density (4.51 µA·cm−2). However, the results of photodegradation measurements revealed that CDs–TiO2 decorated TiO2NTs with different initial states (especially CDs–TiO2–TiO2NTs-0) showed more excellent photocatalytic activity under both ultraviolet (UV) and visible light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen XB, Shen SH, Guo LJ, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010;110(11):6503.

    CAS  Google Scholar 

  2. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A. 2014;2(3):637.

    CAS  Google Scholar 

  3. Li G, Wu L, Li F, Xu P, Zhang D, Li H. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale. 2013;5(5):2118.

    CAS  Google Scholar 

  4. Kim H, Kim J, Kim W, Choi W. Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. J Phys Chem C. 2011;115(19):9797.

    CAS  Google Scholar 

  5. Liu S, Guo E, Yin L. Tailored visible-light driven anatase TiO2 photocatalysts based on controllable metal ion doping and ordered mesoporous structure. J Mater Chem. 2012;22(11):5031.

    CAS  Google Scholar 

  6. Yang M, Jha H, Liu N, Schmuki P. Increased photocurrent response in Nb-doped TiO2 nanotubes. J Mater Chem. 2011;21(39):15205.

    CAS  Google Scholar 

  7. Le TT, Akhtar MS, Park DM, Lee JC, Yang OB. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Appl Catal B. 2012;111–112:397.

    Google Scholar 

  8. deKra KE, Wang C, Lin WB. Metal–Organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater. 2012;24(15):2014.

    Google Scholar 

  9. Tang HL, Ren Y, Wei SH, Liu G, Xu XX. Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity. Rare Met. 2019;38(5):453.

    CAS  Google Scholar 

  10. DeSario PA, Pietron JJ, DeVantier DE, Brintlinger TH, Stroud RM, Rolison DR. Plasmonic enhancement of visible-light water splitting with Au–TiO2 composite aerogels. Nanoscale. 2013;5(17):8073.

    CAS  Google Scholar 

  11. Liu B, Wang Q, Yu S, Jing P, Liu L, Xu G, Zhang J. Architecture engineering toward highly active palladium integrated titanium dioxide yolk–double-shell nanoreactor for catalytic applications. Nanoscale. 2014;6(20):11887.

    CAS  Google Scholar 

  12. Zhang N, Liu S, Xu YJ. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale. 2012;4(7):2227.

    CAS  Google Scholar 

  13. Khan ME, Khan MM, Min BK, Cho MH. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci Rep. 2018;8:1723.

    Google Scholar 

  14. Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale. 2013;5(14):6323.

    CAS  Google Scholar 

  15. Ansari MO, Khan MM, Ansari SA, Raju K, Lee J, Cho MH. Enhanced thermal stability under dc electrical conductivity retention and visible light activity of Ag/TiO2@polyaniline nanocomposite film. ACS Appl Mater Interfaces. 2014;6(11):8124.

    CAS  Google Scholar 

  16. Ansari MO, Khan MM, Ansari SA, Lee J, Cho MH. Enhanced thermoelectric behaviour and visible light activity of Ag@TiO2/polyaniline nanocomposite synthesized by biogenic–chemical route. RSC Adv. 2014;4(45):23713.

    CAS  Google Scholar 

  17. Khan SUM, Shashry MA, Ingler WB Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 2002;297(5590):2243.

    CAS  Google Scholar 

  18. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269.

    CAS  Google Scholar 

  19. Ansari SA, Khan MM, Ansaric MO, Cho MH. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. N J Chem. 2016;40(4):3000.

    CAS  Google Scholar 

  20. Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed. 2003;42(40):4908.

    CAS  Google Scholar 

  21. Rho WY, Kim HS, Kim HM, Suh JS, Jun BH. Carbon-doped freestanding TiO2 nanotube arrays in dye-sensitized solar cells. N J Chem. 2017;41(1):285.

    CAS  Google Scholar 

  22. Khan ME, Khan MM, Cho MH. Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale. 2018;10(20):9427.

    CAS  Google Scholar 

  23. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.

    CAS  Google Scholar 

  24. Li HT, Kang ZH, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230.

    CAS  Google Scholar 

  25. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49(38):6726.

    CAS  Google Scholar 

  26. Li Y, Liu Z, Wu Y, Chen J, Zhao J, Jin F, Na P. Carbon dots–TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots. Appl Catal B. 2018;224:508.

    CAS  Google Scholar 

  27. Sharma S, Umar A, Mehta SK, Ibhadon AO, Kansal SK. Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dots nanocomposite. N J Chem. 2018;42(9):7445.

    CAS  Google Scholar 

  28. Ma Z, Ming H, Huang H, Liu Y, Kang Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. N J Chem. 2012;36(4):861.

    CAS  Google Scholar 

  29. Zheng C, An X, Yin T. New metal-free catalytic degradation systems with carbon dots for thymol blue. N J Chem. 2017;41(22):13365.

    CAS  Google Scholar 

  30. Zhang M, Fan H, Zhao N, Peng H, Ren X, Wang W, Li H, Chen G, Zhu Y, Jiang X, Wu P. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem Eng J. 2018;347:291.

    CAS  Google Scholar 

  31. Ren X, Fan H, Ma J, Wang C, Zhang M, Zhao N. Hierarchical Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors. Appl Surf Sci. 2018;441:194.

    CAS  Google Scholar 

  32. Ma L, Fan H, Fu K, Lei S, Hu Q, Huang H, He G. Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@g-C3N4 core shell nanostructure toward high hydrogen evolution. ACS Sustain Chem Eng. 2017;5(8):7093.

    CAS  Google Scholar 

  33. Tian H, Fan H, Ma J, Liu Z, Ma L, Lei S, Fang J, Long C. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J Hazard Mater. 2018;341:102.

    Google Scholar 

  34. Dhanasekaran P, Selvaganesh SV, Bhat SD. Preparation of TiO2:TiN composite nanowires as a support with improved long-term durability in acidic medium for polymer electrolyte fuel cells. N J Chem. 2017;41(8):2987.

    CAS  Google Scholar 

  35. Yan Y, Han M, Konkin A, Koppe T, Wang D, Andreu T, Chen G, Vetter U, Morante JR, Schaaf P. Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J Mater Chem A. 2014;2(32):12708.

    CAS  Google Scholar 

  36. Wang J, Lin Z. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater. 2010;22(2):579.

    CAS  Google Scholar 

  37. Xie GC, Zhang K, Guo BD, Liu Q, Fang L, Gong JR. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater. 2013;25(28):3820.

    CAS  Google Scholar 

  38. Zhang N, Zhang YH, Xu YJ. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale. 2012;4(19):5792.

    CAS  Google Scholar 

  39. Kim HI, Moon GH, Satoca DM, Park Y, Choi W. Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J Phys Chem C. 2012;116(1):1535.

    CAS  Google Scholar 

  40. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16(12):3331.

    CAS  Google Scholar 

  41. Su J, Zhu L, Geng P, Chen G. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient heterojunction for pollutants degradation under solar light. J Hazard Mater. 2016;316:159.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51502345) and the Tianjin Sciences Foundation (No. 16JCQNJC03100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, CL., Ding, S. et al. Photoelectrochemical performance of TiO2 nanotube arrays by in situ decoration with different initial states. Rare Met. 40, 720–727 (2021). https://doi.org/10.1007/s12598-019-01363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01363-7

Keywords

Navigation