Skip to main content
Log in

Co3O4 Nanoparticles Modified TiO2 Nanotube Arrays with Improved Photoelectrochemical Performance

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Co3O4 modified TiO2 nanotube arrays (TiO2-NTs) were successfully fabricated by electrodeposition and thermal oxidation process. The prepared samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopic (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectroscopy. The photoelectrocatalytic properties of as-prepared samples were investigated under visible light and UV-vis light irradiation. Meanwhile, taking methyl orange aqueous solution as target substrate for photoelectrocatalytic degradation experiments, the degradation rate under UV-vis light irradiation and dark condition were evaluated. The prepared Co3O4/TiO2-NTs exhibited much higher photoelectrochemical activity than TiO2-NTs under visible light irradiation and UV-vis light irradiation. The degradation rate of methyl orange on Co3O4/TiO2-NTs electrode reaches 90.7% under applied potential of 1.3 V and UV-vis light irradiation for 10 h, which is only 53.4% on TiO2-NTs electrode. The improved performance could be attributed to the higher photo-generated carrier concentration and carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gogate, P.R. and Pandit, A.B., Adv. Env. Res., 2004, vol. 8(3), pp. 3–501.

    Google Scholar 

  2. Li, D.D., Chinese J. Inorg. Chem., 2012, vol. 28(7), pp. 7–1343.

    Google Scholar 

  3. Li, J., Zhao, H., Lei, Y., Lei, Q., and Zheng, Z., Nano, 2018, vol. 13(4):1850045.

    Google Scholar 

  4. Ranjit, K.T., Willner, I., Bossmann, S.H., and Braun, A.M., J. Materials Sci., 1999, vol. 34(21), pp. 21–5273.

    Article  Google Scholar 

  5. Rho, W.Y., Kim, H.S., Sang, H.L., Jung, S., Suh, J.S., Hahn, Y.B., and Jun., B.H., Chem. Physics Letters, 2014, vol. 614, pp. 78–81.

    Article  CAS  Google Scholar 

  6. Tang, Y., Hong, L., Li, J., Hou, G., Cao, H., Wu, L., Zheng, G., and Wu, Q., Chem. Commun, 2017, vol. 53(38), pp. 38–5298.

    Article  Google Scholar 

  7. Jiang, F., Zheng, S.R., Zheng, Z., Xu, Z.Y., and Wang., Y.J., J. Env. Sci., 2006, vol. 18(4), pp. 4–783.

    Google Scholar 

  8. Yang, J., Li, D., Pang, Z., and Wei, Q., Nano, 2016, vol. 11(12), p. 1650132.

    Article  CAS  Google Scholar 

  9. Cheng, X., Lu, Y., Gu, S., and Dawson, G., Nano, 2017, vol. 12(9), p. 1750115.

    Article  CAS  Google Scholar 

  10. Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S.M., and Grätzel, M., Acs Nano, 2008, vol. 2(6), pp. 6–1113.

    Article  Google Scholar 

  11. Roy, P., Kim, D., Lee, K., Spiecker, E., and Schmuki, P., Nanoscale, 2010, vol. 2(1), pp. 1–45.

    Article  Google Scholar 

  12. Zhong, J.S., Wang, Q.Y., and Yu, Y.F., J. Alloys & Compounds, 2015, vol. 620(0), pp. 0–168.

    CAS  Google Scholar 

  13. Santamaria, M., Conigliaro, G., Franco, F.D., and Quarto, F.D., Electrochimica Acta, 2014, vol. 144(0), pp. 0–315.

    CAS  Google Scholar 

  14. Bessekhouad, Y., Robert, D., and Weber, J.V., Catalysis Today, 2005, vol. 101(3), pp. 3–315.

    Google Scholar 

  15. Kim, H.K., Seong, T.Y., Lim, J.H., Cho, W.I., and Yoon, Y.S., J. Power Sources, 2001, vol. 102(1), pp. 1–167.

    Google Scholar 

  16. Hou, L.R., Yuan, C.Z., and Peng, Y., J. Hazardous Materials, 2007, vol. 139(2), pp. 2–310.

    Article  Google Scholar 

  17. Murakami, Y., Ohta, I., Hirakawa, T., and Nosaka, Y., Chem. Phys. Letters, 2010, vol. 493(4), pp. 4–292.

    Google Scholar 

  18. Wang, N., Sun, C., Zhao, Y., Zhou, S., Chen, P., and Lei, J., J. Materials Chem., 2008, vol. 18(33), pp. 33–3909.

    Article  Google Scholar 

  19. Lohaus, C., Morasch, J., Brötz, J., Klein, A., and Jaegermann, W., J. Physics D Appl. Physics, 2016, vol. 49(15), p. 155306.

    Article  Google Scholar 

  20. Mane, A.U., Shalini, K., and Shivashankar, S.A., J. de Physique IV, 2001, vol. 11(11), pp. 11–637.

    Google Scholar 

  21. Shinde, V.R., Mahadik, S.B., Gujar, T.P., and Lokhande, C.D., Appl. Sur. Sci., 2006, vol. 252(20), pp. 20–7487.

    Article  Google Scholar 

  22. Szmaja, W., Kozłowski, W., Polański, K., Balcerski, J., Cichomski, M., Grobelny, J., Zieliński, M., and Miękoś, E., Chem. Physics Letters, 2012, vol. 542(2–3), pp. 117–122.

    Article  CAS  Google Scholar 

  23. Jang, J.S., Kim, H.G., and Lee, S.H., J. Physics & Chem. of Solids, 2012, vol. 73(11), pp. 11–1372.

    Google Scholar 

  24. Cao, C., Hu, C., Shen, W., Wang, S., Wang, J., and Tian, Y.S., J. Alloys and Compounds, 2013, vol. 550(0), pp. 0–137.

    CAS  Google Scholar 

  25. Fan, Y., Zhang, N., Zhang, L., Shao, H., Wang, J., Zhang, J.Q., and Cao, C., Electrochimica Acta, 2013. 94(0), pp. 285–293.

    Article  CAS  Google Scholar 

  26. Wang, L., Deng, J., Lou, Z., and Zhang, T., J. Materials Chem. A, 2014, vol. 2(26), p. 10022.

    Article  CAS  Google Scholar 

  27. Cao, H., Wang, Z., Hou, G., and Zheng, G., Sur. & Coat. Techn., 2010, vol. 205(3), pp. 3–885.

    Article  Google Scholar 

  28. Chuang, T.J., Brundle, C.R., and Rice, D.W., Surface Sci., 1976, vol. 59(2), pp. 2–413.

    Article  Google Scholar 

  29. Langell, M.A., Anderson, M.D., Carson, G.A., Peng, L., and Smith, S., Phys. Rev. B Condensed Matter, 1999, vol. 59, pp. 4791–4798.

    Article  CAS  Google Scholar 

  30. Peng, H., Lu, J., Wu, C., Yang, Z., Chen, H., Song, W., and Li, P., Yin, H., Appl. Sur. Sci., 2015, vol. 353, pp. 1003–1012.

    Article  CAS  Google Scholar 

  31. Zhang, X., Zhang, L., Xie, T., and Wang, D., J. Phys. Chem. C, 2009, vol. 113(17), pp. 17–7371.

    Article  Google Scholar 

  32. Long, M., Cai, W., Cai, J., Zhou, B., Chai, X., and Wu., Y., J. Phys. Chem. B, 2007, vol. 38(4), p. 20211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqu Zheng.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Lu, Y., Ning, W. et al. Co3O4 Nanoparticles Modified TiO2 Nanotube Arrays with Improved Photoelectrochemical Performance. Russ J Appl Chem 92, 64–70 (2019). https://doi.org/10.1134/S1070427219010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219010099

Keywords

Navigation