Skip to main content
Log in

Synthesis, characterization and optical studies on Sm2+-doped CdSe nanocrystals: a blueshift and fixed emission with high quantum yields

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

CdSe:Sm nanocrystals (NCs) were synthesized by a water phase method, and their structures, shapes and optical properties were further characterized. X-ray diffraction (XRD) analysis suggested that both the CdSe and CdSe:Sm NCs contained (111), (220) and (311) lattice planes in the zinc blende structure overlapped with the (002), (110) and (112) lattice planes in the wurtzite structure, and the diameters were about 4.2, 3.3 and 2.3 nm for CdSe, CdSe:Sm(8%) and CdSe:Sm(10%) NCs, respectively. All of the CdSe:Sm NCs were monodispersed and uniform spherical nanocrystals. The CdSe:Sm(10%) NCs prepared with different reaction times exhibited constant absorption spectra at 430 nm and a fixed emission peak at 581 nm. Compared with those of pure CdSe NCs, the fluorescence emission of CdSe:Sm(10%) NCs blueshifted 20–36 nm, and the absorption peak initially redshifted and then blueshifted with the prolongation of reaction time. In addition, the Sm2+ doping decreased the fluorescence lifetime and increased the quantum yields (QYs) of CdSe NCs. The QYs of CdSe:Sm NCs increased initially and then decreased with the increase in the amount of doped Sm2+. The initial pH and charge compensator concentration also exhibited significantly enhanced fluorescence emission of CdSe:Sm NCs.

Graphic abstract

CdSe and CdSe:Sm NCs were prepared via a water phase method. The structure and optical properties were investigated; the Sm2+ was doped into CdSe NCs successfully. CdSe and CdSe:Sm NCs all exhibit nearly spherical particles, doping Sm2+ increases the particle size, and the QYs are also enhanced. As the reaction time varies to 1, 2, 5, 8 and 10 h, the emission spectra of CdSe NCs present redshift, while the CdSe:Sm NCs have a fixed emission peak, which is the characteristic peak of Sm2+. As compared with pure CdSe NCs, the emission spectra of CdSe:Sm NCs appear blueshift by 20–36 nm. Doping Sm2+ into CdSe NCs can improve the optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Low FW, Lai CW, Lee KM, Juan JC. Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Met. 2018;37(11):919.

    CAS  Google Scholar 

  2. Samadpour M. Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol Energy. 2017;144:63.

    CAS  Google Scholar 

  3. Momeni MM. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes. Rare Met. 2017;36(11):865.

    CAS  Google Scholar 

  4. Babamiri B, Hallaj R, Salimi A. Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe@CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads. Sens Actuators B Chem. 2018;254:551.

    CAS  Google Scholar 

  5. Ghosh J, Ghosh R, Giri PK. Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens Actuators B Chem. 2018;254:681.

    CAS  Google Scholar 

  6. Ye DX, Ma YY, Zhao W, Cao HM, Kong JL, Xiong HM, Möhwald H. ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. Am Chem Soc. 2016;10(4):4294.

    CAS  Google Scholar 

  7. Khan R, Zulfiqar, Fashu S, Rehman ZU, Khan A, Rahman MU. Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles. J Mater Sci: Mater Electron. 2018;29(1):32.

    CAS  Google Scholar 

  8. Linkov P, Krivenkov V, Nabiev I, Samokhvalov P. High quantum yield CdSe/ZnS/CdS/ZnS multishell quantum dots for biosensing and optoelectronic applications. Mater Today Proc. 2016;3(2):104.

    Google Scholar 

  9. Tu HL, Zhao HB, Wei F, Zhang QZ, Du J. Research progress in two-dimensional atomic crystal materials and Van der Waals heterostructures. Chin J Rare Met. 2017;41(05):449.

    Google Scholar 

  10. Kumar TR, Prabukanthan P, Harichandran G, Theerthagiri J, Chandrasekaran S, Madhavan J. Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films. Ionics. 2017;23(9):2497.

    Google Scholar 

  11. Tomás SA, Lozada-Morales R, Portillo O, Lima-Lima H, Palomino-Merino R, Zelaya O. Characterization of chemical bath deposited CdS thin films doped with methylene blue and Er3+. Eur Phys J Spec Top. 2008;153(1):299.

    Google Scholar 

  12. Manivannan N, Chandar Shekar B, Senthil Kumaran CK, Sathyamoorthy R. Effect of Gd doping on structural, surface and optical properties of ZnS prepared by chemical precipitation method. Optik. 2017;136:259.

    CAS  Google Scholar 

  13. Heng CL, Wang T, Su WY, Wu HC, Yang MC, Deng LG, Yin PG, Finstad TG. Intense ultraviolet photoluminescent emission from Yb doped ZnO thin films on Si after high temperature annealing. J Alloys Compd. 2017;695:2232.

    CAS  Google Scholar 

  14. Ashwini K, Yashaswini, Pandurangappa C. Solvothermal synthesis, characterization and photoluminescence studies of ZnS: Eu nanocrystals. Opt Mater. 2014;37:537.

    CAS  Google Scholar 

  15. Pal M, Mathews NR, Morales ER, Gracia y Jiménez JM, Mathew X. Synthesis of Eu3+ doped ZnS nanoparticles by a wet chemical route and its characterization. Opt Mater. 2013;35(12):2664.

    CAS  Google Scholar 

  16. Ma L, Jiang K, Liu XT, Chen W. A violet emission in ZnS:Mn, Eu: luminescence and applications for radiation detection. J Appl Phys. 2014;115(10):103104.

    Google Scholar 

  17. Gong Y, Wu H, Fan ZF. Water-soluble Eu(III)-doped ZnS quantum dots for the room-temperature phosphorescence detection of melamine in milk products. Anal Methods. 2013;5(21):6114.

    CAS  Google Scholar 

  18. Poornaprakash B, Poojitha PT, Chalapathi U, Park S. Achieving room temperature ferromagnetism in ZnS nanoparticles via Eu3+ doping. Mater Lett. 2016;181:227.

    CAS  Google Scholar 

  19. Chowdhury PS, Patra A. Role of dopant concentration and surface coating on photophysical properties of CdS:Eu3+ nanocrystals. Phys Chem Chem Phys. 2006;8(11):1329.

    CAS  Google Scholar 

  20. Kumar GA, Naik HSB, Viswanath R, Gowda IKS, Santhosh KN. Tunable emission property of biotin capped Gd:ZnS nanoparticles and their antibacterial activity. Mater Sci Semicond Process. 2017;58:22.

    CAS  Google Scholar 

  21. Bhargava RN, Gallagher D. Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett. 1994;72(3):416.

    CAS  Google Scholar 

  22. Deng WQ, Dai R, Jiang X, Luo H, Huang K, Xiong XL. Synthesis functionalization and bio-applications of CdSe quantum dots. China Meas Test. 2017;43(11):52.

    Google Scholar 

  23. Chelouche A, Touam T, Djouadi D, Aksas A. Synthesis and characterizations of new morphological ZnO and Ce-doped ZnO powders by sol–gel process. Optik. 2014;125(19):5626.

    CAS  Google Scholar 

  24. Zhao SH, Du XL, Cui YT, Liu QL. Preparation of ZnO:Eu3+ nanospheres via a micro-emulsion method and analysis of the photoluminescence properties. J Nanosci Nanotechnol. 2014;14(5):3953.

    CAS  Google Scholar 

  25. Das S, Das S, Sutradhar S. Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram Int. 2017;43(9):6932.

    CAS  Google Scholar 

  26. Xu HY, Zhang JH, Li FS. Synthesis and optical properties of CdTe: Eu quantum dots. Chin J Lumin. 2016;37(3):306.

    Google Scholar 

  27. Fang D, Li CX, Xu SQ. Optical properties of novel Yb2+ doped glass ceramics. J Univ Shanghai Sci Technol. 2010;32(4):355.

    CAS  Google Scholar 

  28. Xu XM, Zhou LY, Zhang Q, Wang RF. Synthesis and luminescence properties of Eu2+-doped CdSe nanocrystals. RSC Adv. 2013;3(46):24593.

    CAS  Google Scholar 

  29. Tan GL, Du JH, Zhang QJ. Structural evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying. J Alloys Compd. 2009;468(1–2):421.

    CAS  Google Scholar 

  30. Raola OE, Strouse GF. Synthesis and characterization of Eu-doped cadmium selenide nanocrystals. Nano Lett. 2002;2(12):1443.

    CAS  Google Scholar 

  31. Mahmoud WE. Synthesis and optical properties of Ce-doped ZnO hexagonal nanoplatelets. J Cryst Growth. 2010;312(21):3075.

    CAS  Google Scholar 

  32. Lang JH, Zhang Q, Han Q, Fang Y, Wang JY, Li XY, Liu YQ, Wang DD, Yang JH. The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route resulting in the bandgap narrowing. Mater Chem Phys. 2017;194:29.

    CAS  Google Scholar 

  33. Li HL, Zhang Z, Lv YB, Huang JZ, Liu RX. First-principles and experimental study on the electronic and optical properties of Eu doped ZnO structure. Acta Mentall Sin. 2013;49(4):506.

    Google Scholar 

  34. Radzhabov EA, Kozlovsky VA. Sm2+ spectra in lanthanum fluoride. Phys Procedia. 2015;76:47.

    CAS  Google Scholar 

  35. Pradhan N, Goorskey D, Thessing J, Peng XG. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc. 2005;127(50):17586.

    CAS  Google Scholar 

  36. Kabongo GL, Mhlongo GH, Malwela T, Mothudi BM, Hillie KT, Dhlamini SM. Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals. J Alloys Compd. 2014;591:156.

    CAS  Google Scholar 

  37. Sin JC, Lam SM, Lee KT, Mohamed AR. Preparati- on of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceram Int. 2014;40(4):5431.

    CAS  Google Scholar 

  38. Du D, Li J, Ai FW, Lian SQ, Wang GR. Synthesis and characterization of Eu3+-doped ZnO nanomaterials. Appl Chem Ind. 2016;45(10):1857.

    Google Scholar 

  39. Tian LH, Mho SI. Enhanced luminescence of SrTiO3:Pr3+ by incorporation of Li+ ion. Solid State Commun. 2003;125(11–12):647.

    CAS  Google Scholar 

  40. Hu WY, Liu X, Wei XH, Yang DM, Lu YN. Influence of charge compensation on the fluorescence characteristics of ZnO:Eu3+ phosphor. J Chin Ceram Soc. 2010;38(7):1334.

    Google Scholar 

  41. Singh AK, Singh K, Rai SB. Role of Li+ ion in the luminescence enhancement of lanthanide ions: favorable modifications in host matrices. RSC Adv. 2014;4(51):27039.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21364007), the Natural Science Foundation of Inner Mongolia (No. 2016MS0201) and the Program for Young Talents of Science and Technology of Baotou Teachers College (No. 01135003/003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Fang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JH., Gao, JF., Yong, SL. et al. Synthesis, characterization and optical studies on Sm2+-doped CdSe nanocrystals: a blueshift and fixed emission with high quantum yields. Rare Met. 38, 1097–1104 (2019). https://doi.org/10.1007/s12598-019-01325-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01325-z

Keywords

Navigation