Skip to main content
Log in

Synthesis and optical properties of Mn2+-doped Cd–In–S colloidal nanocrystals

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, light-emitting Mn2+-doped nanocrystals (NCs) have been widely studied because of their strong and stable Mn2+ d–d emission. Herein, highly efficient colloidal Mn2+-doped Cd–In–S NCs were prepared by a hot injection strategy. The as-prepared NCs have a cubic crystal structure of CdS host and exhibit strong Mn2+ emission. The photoluminescence (PL) intensity, PL position, and PL lifetime of this Mn2+ emission can be adjusted by changing the doping level of Mn2+. In particular, by tuning the amount of dopant, the emission color can be varied in the range of 601 nm to 643 nm, which is due to the coordination field environment of Mn2+ ions changed by the doping concentration. The PL intensity of Mn2+ is significantly enhanced by the ZnS shell coating, and the highest PL quantum yield can reach 56%, which is attributed to the removal of NCs surface-related defects by shell modification. A prototype LED was fabricated as well by using the as-prepared highly efficient Mn2+-doped Cd–In–S NCs as a color conversion material. The Mn2+-doped multicomponent semiconductor NCs reported here extend the availability of classical Mn2+-doped luminescent materials and provide alternatives for other applications requiring orange-red colloidal NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pradhan N, Das Adhikari S, Nag A, Sarma DD (2017) Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew Chem Int Edit 56:7038–7054

    CAS  Google Scholar 

  2. Knowles KE, Hartstein KH, Kilburn TB, Marchioro A, Nelson HD, Whitham PJ, Gamelin DR (2016) Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and applications. Chem Rev 116:10820–10851

    CAS  Google Scholar 

  3. Cao S, Zhang S, Zhang T, Lee JY (2018) Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem Mater 30:4838–4846

    CAS  Google Scholar 

  4. Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779

    CAS  Google Scholar 

  5. Yuan X, Ji S, De Siena MC, Fei L, Zhao Z, Wang Y, Li H, Zhao J, Gamelin DR (2017) Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration. Chem Mater 29:8003–8011

    CAS  Google Scholar 

  6. Cao S, Zheng J, Zhao J, Wang L, Gao F, Wei G, Zeng R, Tian L, Yang W (2013) Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots. J Mater Chem C 1:2540–2547

    CAS  Google Scholar 

  7. Hazarika A, Pandey A, Sarma DD (2014) Rainbow emission from an atomic transition in doped quantum dots. J Phys Chem Lett 5:2208–2213

    CAS  Google Scholar 

  8. Nag A, Chakraborty S, Sarma D (2008) To dope Mn2+ in a semiconducting nanocrystal. J Am Chem Soc 130:10605–10611

    CAS  Google Scholar 

  9. Qiao T, Parobek D, Son DH (2019) Photons and charges from colloidal doped semiconductor quantum dots. J Mater Chem C 7:14788–14797

    CAS  Google Scholar 

  10. Bhargava R, Gallagher D, Hong X, Nurmikko A (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416

    CAS  Google Scholar 

  11. Pradhan N (2016) Red-tuned Mn d–d emission in doped semiconductor nanocrystals. ChemPhysChem 17:1087–1094

    CAS  Google Scholar 

  12. Cao S, Zhao J, Yang W, Li C, Zheng J (2015) Mn2+-doped Zn-In-S quantum dots with tunable bandgaps and high photoluminescence properties. J Mater Chem C 3:8844–8851

    CAS  Google Scholar 

  13. Pradeep KR, Viswanatha R (2020) Mechanism of Mn emission: Energy transfer vs charge transfer dynamics in Mn-doped quantum dots. APL Mater 8:020901

    Google Scholar 

  14. Pradhan N (2019) Mn-doped semiconductor nanocrystals: 25 years and beyond. J Phys Chem Lett 10:2574–2577

    CAS  Google Scholar 

  15. Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A, Sarma DD (2013) Ultranarrow and widely tunable Mn2+-induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys. Phys Rev Lett 110:267401

    Google Scholar 

  16. Pradhan N, Peng X (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129:3339–3347

    CAS  Google Scholar 

  17. Chen H-Y, Maiti S, Son DH (2011) Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals. ACS Nano 6:583–591

    Google Scholar 

  18. Chen O, Shelby DE, Yang Y, Zhuang J, Wang T, Niu C, Omenetto N, Cao YC (2010) Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew Chem Int Edit 122:10330–10333

    Google Scholar 

  19. Zeng R, Zhang T, Dai G, Zou B (2011) Highly emissive, color-tunable, phosphine-free Mn: ZnSe/ZnS core/shell and Mn: ZnSeS shell-alloyed doped nanocrystals. J Phys Chem C 115:3005–3010

    CAS  Google Scholar 

  20. Yang Y, Chen O, Angerhofer A, Cao YC (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc 128:12428–12429

    CAS  Google Scholar 

  21. Manna G, Jana S, Bose R, Pradhan N (2012) Mn-doped multinary CIZS and AIZS nanocrystals. J Phys Chem Lett 3:2528–2534

    CAS  Google Scholar 

  22. Peng L, Li D, Zhang Z, Huang K, Zhang Y, Shi Z, Xie R, Yang W (2015) Large-scale synthesis of single-source, thermally stable, and dual-Emissive Mn-doped Zn-Cu-In-S nanocrystals for bright white light-emitting diodes. Nano Res 8:3316–3331

    CAS  Google Scholar 

  23. Ji S, Yuan X, Cao S, Ji W, Zhang H, Wang Y, Li H, Zhao J, Zou B (2020) Near-unity red Mn2+ photoluminescence quantum yield of doped CsPbCl3 nanocrystals with Cd incorporation. J Phys Chem Lett 11:2142–2149

    CAS  Google Scholar 

  24. Feng J, Zhu H, Wang X, Yang X (2012) Composition-dependent fluorescence emission of ternary Cd-In-S alloyed quantum dots. Chem Comm 48:5452–5454

    CAS  Google Scholar 

  25. Wu T, Zhang Q, Hou Y, Wang L, Mao C, Zheng S-T, Bu X, Feng P (2013) Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. J Am Chem Soc 135:10250–10253

    CAS  Google Scholar 

  26. Chen Y, Hu Q, Wang Q, Yu M, Gong X, Zha T, Gao J, Li S (2019) Direct fabrication of Cd-In-S alloy quantum dots thin films. Mater Res Express 6:115083

    Google Scholar 

  27. Ma D, Shi J-W, Zou Y, Fan Z, Shi J, Cheng L, Sun D, Wang Z, Niu C (2018) Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production. Nanoscale 10:7860–7870

    CAS  Google Scholar 

  28. Lin J, Wang L, Zhang Q, Bu F, Wu T, Bu X, Feng P (2016) Highly effective nanosegregation of dual dopants in a micron-sized nanocluster-based semiconductor molecular single crystal for targeting white-light emission. J Mater Chem C 4:1645–1650

    CAS  Google Scholar 

  29. Lin J, Hu D-D, Zhang Q, Li D-S, Wu T, Bu X, Feng P (2016) Improving photoluminescence emission efficiency of nanocluster-based materials by in situ doping synthetic strategy. J Phys Chem C 120:29390–29396

    CAS  Google Scholar 

  30. Lin J, Zhang Q, Wang L, Liu X, Yan W, Wu T, Bu X, Feng P (2014) Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. J Am Chem Soc 136:4769–4779

    CAS  Google Scholar 

  31. Wang F, Lin J, Zhao T, Hu D, Wu T, Liu Y (2016) Intrinsic “vacancy point defect” induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J Am Chem Soc 138:7718–7724

    CAS  Google Scholar 

  32. Wang F, Lin J, Yu S, Cui X, Ali A, Wu T, Liu Y (2018) Anti-site defects-assisted enhancement of electrogenerated chemiluminescence from in situ Mn2+-doped supertetrahedral chalcogenide nanoclusters. ACS Appl Mater Interfaces 10:38223–38229

    CAS  Google Scholar 

  33. Cao S, Zheng J, Dai C, Wang L, Li C, Yang W, Shang M (2018) Doping concentration-dependent photoluminescence properties of Mn-doped Zn-In-S quantum dots. J Mater Sci 53:1286–1296. https://doi.org/10.1007/s10853-017-1598-0

    Article  CAS  Google Scholar 

  34. Varga A, Endrődi B, Hornok V, Visy C, Janáky C (2015) Controlled photocatalytic deposition of CdS nanoparticles on poly(3-hexylthiophene) nanofibers: a versatile approach to obtain organic/inorganic hybrid semiconductor assemblies. J Phys Chem C 119:28020–28027

    CAS  Google Scholar 

  35. Liang Q, Cui S, Liu C, Xu S, Yao C, Li Z (2018) Construction of CdS@UIO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability. J Colloid Interface Sci 524:379–387

    CAS  Google Scholar 

  36. Bariki R, Majhi D, Das K, Behera A, Mishra BG (2020) Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution. Appl Catal B-Environ 270:118882

    CAS  Google Scholar 

  37. Cao S, Dai C, Zhao J, Zou B (2019) Synthesis of dual-emission Ag- and Mn-codoped Zn-In-S nanocrystals and their optical radiometric temperature sensors. J Nanoparticle Res 21:242

    CAS  Google Scholar 

  38. Cao S, Zheng J, Zhao J, Yang Z, Shang M, Li C, Yang W, Fang X (2016) Robust and stable ratiometric temperature sensor based on Zn–In–S quantum dots with intrinsic dual-dopant ion emissions. Adv Funct Mater 26:7224–7233

    CAS  Google Scholar 

  39. Cao S, Li C, Wang L, Shang M, Wei G, Zheng J, Yang W (2014) Long-lived and well-resolved Mn2+ ion emissions in CuInS-ZnS quantum dots. Sci Rep 4:7510

    Google Scholar 

  40. Bradshaw LR, May JW, Dempsey JL, Li X, Gamelin DR (2014) Ferromagnetic excited-state Mn2+ dimers in ZnS1-xMnxSe quantum dots observed by time-resolved magnetophotoluminescence. Phys Rev B 89:115312

    Google Scholar 

  41. Senden T, van Dijk-Moes RJA, Meijerink A (2018) Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors. Light Sci Appl 7:8

    Google Scholar 

  42. Liu Y, Zhang J, Han B, Wang X, Wang Z, Xue C, Bian G, Hu D, Zhou R, Li D-S, Wang Z, Ouyang Z, Li M, Wu T (2020) New insights into Mn–Mn coupling interaction-directed photoluminescence quenching mechanism in Mn2+-doped semiconductors. J Am Chem Soc 142:6649–6660

    CAS  Google Scholar 

  43. Liu H, Wu Z, Shao J, Yao D, Gao H, Liu Y, Yu W, Zhang H, Yang B (2017) CsPbxMn1–xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 11:2239–2247

    CAS  Google Scholar 

  44. Liu W, Zheng J, Cao S, Wang L, Gao F, Chou K-C, Hou X, Yang W (2018) Mass production of Mn2+-doped CsPbCl3 perovskite nanocrystals with high quality and enhanced optical performance. Inorg Chem Front 5:2641–2647

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51902064), the special fund for “Guangxi Bagui Scholars” and the “Guangxi Hundred-Talent Program”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Cao or Jialong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Dai, C., Yao, S. et al. Synthesis and optical properties of Mn2+-doped Cd–In–S colloidal nanocrystals. J Mater Sci 55, 12801–12810 (2020). https://doi.org/10.1007/s10853-020-04923-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04923-w

Navigation