Skip to main content
Log in

Mechanical properties and in situ fracture behavior of SiO2f/phosphate geopolymer composites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Geopolymers, such as phosphate-based geopolymer, are promising materials that have drawn extensive attentions as wave-transparent candidates with low dielectric loss factor. In this paper, multilayer SiO2 fibers are introduced into phosphate-based geopolymer matrix to prepare composites. Crack generation and fracture behaviors during the three-point bending tests in as-prepared SiO2f/phosphate geopolymer composites are clarified by in situ observation. Before high-temperature treatment, composite with 17 vol% fiber content exhibits the best mechanical properties. A decreasing mechanical strength is observed after being treated at higher temperature, which is attributed to the stronger interface binging between fibers and phosphate-based geopolymer matrix. Most importantly, the presence of SiO2 fibers can strengthen mechanical properties of phosphate-based geopolymer matrix but shows negligible impact on its dielectric properties, achieving dielectric loss factor as low as 3.53 × 10−3 after being treated at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Luz AP, Gomes DT, Pandolfelli VC. High-alumina phosphate-bonded refractory castables: Al(OH)3 sources and their effects. Ceram Int. 2015;41(7):9041.

    Article  CAS  Google Scholar 

  2. Fu S, He P, Wang M, Wang M, Wang R, Yuan J, Cui J. Monoclinic-celsian ceramics formation: through thermal treatment of ion-exchanged 3D printing geopolymer precursor. J Eur Ceram Soc. 2019;39(2–3):563.

    Article  CAS  Google Scholar 

  3. He P, Fu S, Yuan J, Rao J, Xu J, Wang P, Jia D. Celsian formation from barium-exchanged geopolymer precursor: thermal evolution. J Eur Ceram Soc. 2017;37(13):4179.

    Article  CAS  Google Scholar 

  4. He P, Wang R, Fu S, Wang M, Cai D, Ma G, Wang M, Yuan J, Yang Z, Duan X, Wang Y, Jia D, Zhou Y. Safe trapping of cesium into doping-enhanced pollucite structure by geopolymer precursor technique. J Hazard Mater. 2019;367:577.

    Article  CAS  Google Scholar 

  5. Shi C, Fernández-Jiménez A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater. 2006;137(3):1656.

    Article  CAS  Google Scholar 

  6. Guo B, Liu B, Zhang S. Using coal fly ash-based geopolymer to immobilize Cd from lead fuming furnace slag. Rare Met. 2017. https://doi.org/10.1007/s12598-017-0955-0.

    Article  Google Scholar 

  7. Cui X, Liu L, He Y, Chen J, Zhou J. A novel aluminosilicate geopolymer material with low dielectric loss. Mater Chem Phys. 2011;130(1–2):1.

    Article  CAS  Google Scholar 

  8. Douiri H, Louati S, Baklouti S, Arous M, Fakhfakh Z. Enhanced dielectric performance of metakaolin–H3PO4 geopolymers. Mater Lett. 2016;164(1):299.

    Article  CAS  Google Scholar 

  9. Zhang Z, Provis JL, Reid A, Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Compos. 2015;62:97.

    Article  CAS  Google Scholar 

  10. Wang YS, Dai JG, Ding Z, Xu WT. Phosphate-based geopolymer: formation mechanism and thermal stability. Mater Lett. 2017;190:209.

    Article  CAS  Google Scholar 

  11. Douiri H, Louati S, Baklouti S, Arous M, Fakhfakh Z. Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4. Mater Lett. 2014;116:9.

    Article  CAS  Google Scholar 

  12. Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater. 2010;24(7):1176.

    Article  Google Scholar 

  13. He P, Wang M, Fu S, Jia D, Yan S, Yuan J, Xu J, Wang P, Zhou Y. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int. 2016;42(13):14416.

    Article  CAS  Google Scholar 

  14. Bai C, Conte A, Colombo P. Open-cell phosphate-based geopolymer foams by frothing. Mater Lett. 2017;188:379.

    Article  CAS  Google Scholar 

  15. Liu L, Cui X, Qiu S, Yu J, Zhang L. Preparation of phosphoric acid-based porous geopolymers. Appl Clay Sci. 2010;50(4):600.

    Article  CAS  Google Scholar 

  16. Shaikh FUA. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr Build Mater. 2013;43:37.

    Article  Google Scholar 

  17. Dias DP, Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem Concr Compos. 2005;27(1):49.

    Article  CAS  Google Scholar 

  18. Li W, Xu J. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater Sci Eng A. 2009;505(1–2):178.

    Article  Google Scholar 

  19. Lin T, Jia D, He P, Wang M, Liang D. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater Sci Eng A. 2008;497(1–2):181.

    Article  Google Scholar 

  20. Wu Z, Yang C, Liu Q, Ma Y. Damage behavior of tungsten fiber-reinforced copper matrix composite after high-speed impact. Rare Met. 2014;33(3):330.

    Article  Google Scholar 

  21. Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu J. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 2004;52(4):931.

    Article  CAS  Google Scholar 

  22. Zhu K, Xu YJ, Jing T, Hou H. Fracture behavior of a composite composed by Ti-aluminide multi-layered and continuous-SiCf-reinforced Ti-matrix. Rare Met. 2017;36(12):925.

    Article  CAS  Google Scholar 

  23. Li C, Chen Z, Zhu J, Liu Y, Jiang Y, Guan T, Li B, Lin L. Mechanical properties and microstructure of 3D orthogonal quartz fiber reinforced silica composites fabricated by silicasol-infiltration-sintering. Mater Des. 2012;36:289.

    Article  CAS  Google Scholar 

  24. Liu Y, Zhu J, Chen Z, Jiang Y. Mechanical behavior of 2.5D (shallow straight-joint) and 3D four-directional braided SiO2f/SiO2 composites. Ceram Int. 2012;38(5):4245.

    Article  CAS  Google Scholar 

  25. Zhao L, Zhang L, Tian X, He P, Feng J. Interfacial microstructure and mechanical properties of joining electroless nickel plated quartz fibers reinforced silica composite to Invar. Mater Des. 2011;32(1):382.

    Article  Google Scholar 

  26. Lin J, Chen S, Mao D, Wang Z, Ma Q, Qi J, Feng J. Control interfacial microstructure and improve mechanical properties of TC4-SiO2f/SiO2 joint by AgCuTi with Cu foam as interlayer. Ceram Int. 2016;42(15):16619.

    Article  CAS  Google Scholar 

  27. Lin T, Jia D, He P, Wang M. In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater Sci Eng A. 2010;527(9):2404.

    Article  Google Scholar 

  28. Sarker PK, Haque R, Ramgolam KV. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater Des. 2013;44:580.

    Article  CAS  Google Scholar 

  29. Bai C, Colombo P. Processing, properties and applications of highly porous geopolymers: a review. Ceram Int. 2018;44(14):16103.

    Article  CAS  Google Scholar 

  30. Lemougna PN, Wang K, Tang Q, Melo UC, Cui X. Recent developments on inorganic polymers synthesis and applications. Ceram Int. 2016;42(14):15142.

    Article  CAS  Google Scholar 

  31. Wagh AS, Grover S, Jeong SY. Chemically bonded phosphate ceramics: II, warm-temperature process for alumina ceramics. J Am Ceram Soc. 2003;86(11):1845.

    Article  CAS  Google Scholar 

  32. Yuan J, He P, Jia D, Fu S, Zhang Y, Liu X, Cai D, Yang Z, Duan X, Wang S, Zhou Y. In situ processing of MWCNTs/leucite composites through geopolymer precursor. J Eur Ceram Soc. 2017;37(5):2219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872063, 51502052, 51832002 and 51621091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Gang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CQ., Yu, YR., Zhao, YM. et al. Mechanical properties and in situ fracture behavior of SiO2f/phosphate geopolymer composites. Rare Met. 39, 562–569 (2020). https://doi.org/10.1007/s12598-019-01316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01316-0

Keywords

Navigation