Skip to main content
Log in

Preparation and electrochemical properties of Sn/C composites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The metal tin (Sn), as one potential anode material for lithium-ion batteries, rapidly degrades its cyclic performance due to huge volume expansion/contraction during lithium intercalation/de-intercalation process. Amorphous carbon was adopted as conductive and buffer matrix to form Sn/C composites. The products were prepared by hydrothermal reaction and carbothermal reduction using tin tetrachloride and glucose as raw materials. The composites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and galvanostatic charge/discharge measurements. The results show that relative smaller metallic tin particles in 1:8 Sn/C composite are formed and distributed more uniformly in the carbon matrix. The lithium intercalation capacity of Sn/C composites reaches 820.4 mAh·g−1, and the capacity retention over 60 cycles remains 54.1%. 1:8 Sn/C composite exhibits enhanced rate performance and cyclic stability compared to 1:5 and 1:10 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang D, Shi J, Shi J, Yang H. Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries. Electrochim Acta. 2018;259:1081.

    Article  Google Scholar 

  2. Zhao N, Fang R, He MH, Chen C, Li YQ, Bi ZJ, Guo XX. Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 2018;37(6):473.

    Article  Google Scholar 

  3. Yun FL, Lu SG. Thermal characteristic analysis of lithium ion power battery based on high nickel ternary material before and after cycle. Chin J Rare Met. 2018;42(2):182.

    Google Scholar 

  4. Vadlamani BS, Jagannathan M, Chandran KSR. Silicon with columnar microporous architecture for ultrahigh total energy-storage capacity and with highly reversible lithiation performance. ACS Appl Energy Mater. 2018;1(3):993.

    Article  Google Scholar 

  5. Whitehead AH, Elliott JM, Owen JR. Nanostructured tin for use as a negative electrode material in Li-ion batteries. J Power Sour. 1999;81–82:33.

    Article  Google Scholar 

  6. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.

    Article  Google Scholar 

  7. Wachtler M, Besenhard JO, Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sour. 2001;94(2):189.

    Article  Google Scholar 

  8. Li H, Wang Q, Shi L, Chen L, Huang X. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery. Chem Mater. 2002;14(1):103.

    Article  Google Scholar 

  9. Lu W, Luo C, Li Y, Feng Y, Feng W, Zhao Y, Yuan X. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries. J Nanoparticle Res. 2013;15(9):1736.

    Article  Google Scholar 

  10. Dong Z, Zhang R, Ji D, Chernova NA, Karki K, Sallis S, Piper L, Whittingham MS. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn–Fe–C composite anode surpasses graphitic carbon. Adv Sci. 2016;3(4):1500229.

    Article  Google Scholar 

  11. Lin YM, Abel PR, Gupta A, Goodenough JB, Heller A, Mullins CB. Sn–Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Appl Mat Interfaces. 2013;5(17):8273.

    Article  Google Scholar 

  12. Zou YQ, Wang Y. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano. 2011;5(10):8108.

    Article  Google Scholar 

  13. Lee Y, Jo MR, Song K, Nam KM, Park JT, Kang YM. Hollow Sn–SnO2 nanocrystal/graphite composites and their lithium storage properties. ACS Appl Mat Interfaces. 2012;4(7):3459.

    Article  Google Scholar 

  14. Fan X, Tang X, Ma D, Bi P, Jiang A, Zhu J, Xu X. Novel hollow Sn–Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem. 2014;18(4):1137.

    Article  Google Scholar 

  15. Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C. 2014;118(35):20086.

    Article  Google Scholar 

  16. Zhang H, Song H, Chen X, Zhou J. Enhanced lithium ion storage property of Sn nanoparticles: the confinement effect of few-walled carbon nanotubes. J Phys Chem C. 2012;116(43):22774.

    Article  Google Scholar 

  17. Hu R, Waller GH, Wang Y, Chen Y, Yang C, Zhou W, Zhu M, Liu M. Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries. Nano Energy. 2015;18:232.

    Article  Google Scholar 

  18. Tao X, Wu R, Xia Y, Huang H, Chai W, Feng T, Gan Y, Zhang W. Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae. ACS Appl Mat Interfaces. 2014;6(5):3696.

    Article  Google Scholar 

  19. Wang Y, Wu M, Jiao Z, Lee JY. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem Mater. 2009;21(14):3210.

    Article  Google Scholar 

  20. Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.

    Article  Google Scholar 

  21. Yan Y, Ben L, Zhan Y, Huang X. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim Acta. 2016;187:186.

    Article  Google Scholar 

  22. Tallant DR, Friedmann TA, Missert NA, Siegal MP, Sullivan JP. Raman spectroscopy of amorphous carbon. MRS Proc. 1997;498(4):473.

    Google Scholar 

  23. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter. 2000;61(20):14095.

    Article  Google Scholar 

  24. Wsv L, Huang X, Tan TL, Xue JM. Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor. ACS Appl Mater Interfaces. 2018;10(2):1690.

    Article  Google Scholar 

  25. Kim JG, Nam SH, Lee SH, Choi SM, Kim WB. SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl Mater Interfaces. 2011;3(3):828.

    Article  Google Scholar 

  26. Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013;13(2):470.

    Article  Google Scholar 

  27. Hu Y, Yang QR, Ma J, Chou SL, Zhu M, Li Y. Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta. 2015;186:271.

    Article  Google Scholar 

  28. Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. JACS. 2013;135(11):4199.

    Article  Google Scholar 

  29. Li L, Liu X, Wang S, Zhao W. Influence of surface structure on the capacity and irreversible capacity loss of Sn-based anodes for lithium ion batteries. ACS Sustain Chem Eng. 2014;2(7):1857.

    Article  Google Scholar 

  30. Li Y, Zhang H, Chen Y, Shi Z, Cao X, Guo Z, Shen PK. Nitrogen-doped carbon-encapsulated SnO2@Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces. 2016;8(1):197.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ningxia Natural Science Fund (No. NZ17096), the Ningxia Science Research Project for Colleges (No. NGY2016148) and the Project from Ningxia Key Laboratory of Powder Materials and Special Ceramics (No. 1603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei-Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BP., Lv, R. & Lan, DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 38, 996–1002 (2019). https://doi.org/10.1007/s12598-019-01289-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01289-0

Keywords

Navigation