Skip to main content
Log in

Fabrication of titanium nitride nanoparticles onto carbon nanotubes by atomic layer deposition for utilization as Pt electrocatalyst supports

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Because of its good stability and conductivity, titanium nitride (TiN) is considered to be a very promising alternative support for Pt catalyst; however, the preparation of TiN supports is still challenging. In this work, atomic layer deposition was facilely adopted to fabricate TiN nanoparticles onto carbon nanotubes (CNTs), and then the prepared TiN/CNTs hybrid was used as a support of Pt catalyst. The resulting TiN/CNTs-supported Pt nanoparticles (Pt@TiN/CNTs) nanocomposite showed higher catalytic activity and long-term stability toward the oxygen reduction reaction than the commercial Pt/C, which should be due to the high conductivity and high stability of TiN support, as well as the favorable Pt–TiN strong interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43.

    CAS  Google Scholar 

  2. Wang B, Cui X, Huang J, Cao R, Zhang Q. Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chin Chem Lett. 2018;29(12):1757.

    CAS  Google Scholar 

  3. Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed. 2013;52(33):8526.

    CAS  Google Scholar 

  4. Tian X, Luo J, Nan H, Zou H, Chen R, Shu T, Li X, Li Y, Song H, Liao S, Adzic RR. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J Am Chem Soc. 2016;138(5):1575.

    CAS  Google Scholar 

  5. Wang H, Yin S, Li Y, Yu H, Li C, Deng K, Xu Y, Li X, Xue H, Wang L. One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction. J Mater Chem A. 2018;6(8):3642.

    CAS  Google Scholar 

  6. Xu G, Wang B, Zhu J, Liu F, Chen Y, Zeng J, Jiang J, Liu Z, Tang Y, Lee JM. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016;6(8):5260.

    CAS  Google Scholar 

  7. Xue Q, Bai J, Han C, Chen P, Jiang J, Chen Y. Au nanowires@Pd-polyethyleneimine nanohybrids as highly active and methanol-tolerant electrocatalysts towards oxygen reduction reaction in alkaline media. ACS Catal. 2018;8(12):11287.

    CAS  Google Scholar 

  8. Wang H, Yin S, Xu Y, Li X, Alshehri AA, Yamauchi Y, Xue H, Kaneti YV, Wang L. Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for oxygen reduction reaction. J Mater Chem A. 2018;6(18):8662.

    CAS  Google Scholar 

  9. Wang Z, Ren X, Luo Y, Wang L, Cui G, Xie F, Wang H, Xie Y, Sun X. Ultrafine platinum–cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale. 2018;10(26):12302.

    CAS  Google Scholar 

  10. Huang X, Zhao Z, Chen Y, Zhu E, Li M, Duan X, Huang Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ Sci. 2014;7(9):2957.

    CAS  Google Scholar 

  11. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science. 2007;315(5811):493.

    CAS  Google Scholar 

  12. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ. 2005;56(1–2):9.

    CAS  Google Scholar 

  13. Chen S, Wei Z, Qi X, Dong L, Guo Y, Wan L, Shao Z, Li L. Nanostructured polyaniline-decorated Pt/C@PANI core–shell catalyst with enhanced durability and activity. J Am Chem Soc. 2012;134(32):13252.

    CAS  Google Scholar 

  14. Li Z, Zeng R, Jiang L. Pt-based core-shell catalyst for proton exchange membrane fuel cell. Chin J Rare Met. 2017;41(8):925.

    Google Scholar 

  15. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.

    CAS  Google Scholar 

  16. Wu Y, Liao S, Guo H, Hao X, Liang Z. Ultralow platinum-loading PtPdRu@PtRuIr/C catalyst with excellent CO tolerance and high performance for the methanol oxidation reaction. Rare Met. 2014;33(3):337.

    CAS  Google Scholar 

  17. Wang X, Li W, Chen Z, Waje M, Yan Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources. 2006;158(1):154.

    CAS  Google Scholar 

  18. He D, Mu S, Pan M. Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells. Carbon. 2011;49(1):82.

    CAS  Google Scholar 

  19. Yang Z, Li J, Ling Y, Zhang Q, Yu X, Cai W. Bottom-up design of high-performance Pt electrocatalysts supported on carbon nanotubes with homogeneous ionomer distribution. ChemCatChem. 2017;9(17):3307.

    CAS  Google Scholar 

  20. Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan H. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. 2016;3(5):1500286.

    Google Scholar 

  21. Balogun MS, Huang Y, Qiu W, Yang H, Ji H, Tong Y. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today. 2017;20(8):425.

    CAS  Google Scholar 

  22. Cui Z, Burns RG, DiSalvo FJ. Mesoporous Ti0.5Nb0.5N ternary nitride as a novel noncarbon support for oxygen reduction reaction in acid and alkaline electrolytes. Chem Mater. 2013;25(19):3782.

    CAS  Google Scholar 

  23. Dong Y, Wu Y, Liu M, Li J. Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. Chemsuschem. 2013;6(10):2016.

    CAS  Google Scholar 

  24. Shin H, Kim H, Chung DY, Yoo JM, Weon S, Choi W, Sung YE. Scaffold-like titanium nitride nanotubes with a highly conductive porous architecture as a nanoparticle catalyst support for oxygen reduction. ACS Catal. 2016;6(6):3914.

    CAS  Google Scholar 

  25. Yang S, Kim J, Tak YJ, Soon A, Lee H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed. 2016;55(6):2058.

    CAS  Google Scholar 

  26. Yang S, Chung DY, Tak YJ, Kim JW, Han H, Yu JS, Soon A, Sung YE, Lee H. Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation. Appl Catal B Environ. 2015;174–175:35.

    Google Scholar 

  27. Qin P, Li X, Gao B, Fu J, Xia L, Zhang X, Huo K, Shen W, Chu PK. Hierarchical TiN nanoparticles-assembled nanopillars for flexible supercapacitors with high volumetric capacitance. Nanoscale. 2018;10(18):8728.

    CAS  Google Scholar 

  28. Pan Z, Xiao Y, Fu Z, Zhan G, Wu S, Xiao C, Hua G, Wei Z. Hollow and porous titanium nitride nanotubes as high-performance catalyst supports for oxygen reduction reaction. J Mater Chem A. 2014;2(34):13966.

    CAS  Google Scholar 

  29. Thotiyl MMO, Ravikumar T, Sampath S. Platinum particles supported on titanium nitride: an efficient electrode material for the oxidation of methanol in alkaline media. J Mater Chem. 2010;20(47):10643.

    Google Scholar 

  30. Avasarala B, Murray T, Li W, Haldar P. Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J Mater Chem. 2009;19(13):1803.

    CAS  Google Scholar 

  31. Yang M, Cui Z, DiSalvo FJ. Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation. Phys Chem Chem Phys. 2013;15(4):1088.

    Google Scholar 

  32. Anjaneyulu O, Ishii S, Imai T, Tanabe T, Ueda S, Nagao T, Abe H. Plasmon-mediated photothermal conversion by TiN nanocubes toward CO oxidation under solar light illumination. RSC Adv. 2016;6(112):110566.

    CAS  Google Scholar 

  33. Tian X, Luo J, Nan H, Fu Z, Zeng J, Liao S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J. Mater Chem A. 2015;3(32):16801.

    CAS  Google Scholar 

  34. Nan H, Dang D, Tian X. Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction. J Mater Chem A. 2018;6(14):6065.

    CAS  Google Scholar 

  35. Yang M, Allen AJ, Nguyen MT, Ralston WT, MacLeod MJ, DiSalvo FJ. Corrosion behavior of mesoporous transition metal nitrides. J Solid State Chem. 2013;205(42):49.

    CAS  Google Scholar 

  36. Cui Z, Yang M, Chen H, Zhao M, DiSalvo FJ. Mesoporous TiN as a noncarbon support of Ag-rich PtAg nanoalloy catalysts for oxygen reduction reaction in alkaline media. Chemsuschem. 2014;7(12):3356.

    CAS  Google Scholar 

  37. Xiao Y, Zhan G, Fu Z, Pan Z, Xiao C, Wu S, Chen C, Hu G, Wei Z. Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction. J Power Sour. 2015;284:296.

    CAS  Google Scholar 

  38. Tian X, Tang H, Luo J, Nan H, Shu T, Du L, Zeng J, Liao S, Adzic RR. High-performance core–shell catalyst with nitride nanoparticles as a core: well-defined titanium copper nitride coated with an atomic Pt layer for the oxygen reduction reaction. ACS Catal. 2017;7(6):3810.

    CAS  Google Scholar 

  39. Liu M, Dong Y, Wu Y, Feng H, Li J. Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction. Chem Eur J. 2013;19(44):14781.

    CAS  Google Scholar 

  40. Youn DH, Bae G, Han S, Kim JY, Jang JW, Park H, Choi SH, Lee JS. A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support. J Mater Chem A. 2013;1(27):8007.

    CAS  Google Scholar 

  41. Wen Z, Cui S, Pu H, Mao S, Yu K, Feng X, Chen J. Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst. Adv Mater. 2011;23(45):5445.

    CAS  Google Scholar 

  42. Jun YS, Hong WH, Antonietti M, Thomas A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv Mater. 2009;21(42):4270.

    CAS  Google Scholar 

  43. Jukk K, Kongi N, Tarre A, Rosental A, Treshchalov AB, Kozlova J, Ritslaid P, Matisen L, Sammelselg V, Tammeveski K. Electrochemical oxygen reduction behaviour of platinum nanoparticles supported on multi-walled carbon nanotube/titanium dioxide composites. J Electroanal Chem. 2014;735:68.

    CAS  Google Scholar 

  44. Jiang L, Gao L. Carbon nanotubes–metal nitride composites: a new class of nanocomposites with enhanced electrical properties. J Mater Chem. 2005;15(2):260.

    CAS  Google Scholar 

  45. Jia Y, Wang Y, Dong L, Huang J, Zhang Y, Su J, Zang J. A hybrid of titanium nitride and nitrogen-doped amorphous carbon supported on SiC as a noble metal-free electrocatalyst for oxygen reduction reaction. Chem Commun. 2015;51(13):2625.

    CAS  Google Scholar 

  46. Isogai S, Ohnishi R, Katayama M, Kubota J, Kim DY, Noda S, Cha D, Takanabe K. Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the electrocatalytic oxygen reduction reaction. Chem-Asian J. 2012;7(2):286.

    CAS  Google Scholar 

  47. Haldorai Y, Arreaga-Salas D, Rak CS, Huh YS, Han YK, Voit W. Platinized titanium nitride/graphene ternary hybrids for direct methanol fuel cells and titanium nitride/graphene composites for high performance supercapacitors. Electrochim Acta. 2016;220:465.

    CAS  Google Scholar 

  48. Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubotaa J, Domen K. Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chem Commun. 2010;46(40):7492.

    CAS  Google Scholar 

  49. Higgins DC, Choi JY, Wu J, Lopez A, Chen Z. Titanium nitride–carbon nanotube core–shell composites as effective electrocatalyst supports for low temperature fuel cells. J Mater Chem. 2012;22(9):3727.

    CAS  Google Scholar 

  50. Liu G, Pan Z, Zhang B, Xiao J, Xia G, Zhao Q, Shi S, Hu G, Xiao C, Wei Z, Xu Y. A novel TiN coated CNTs nanocomposite CNTs@TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Int J Hydrog Energy. 2017;42(17):12467.

    CAS  Google Scholar 

  51. Liu B, Huo L, Zhang G, Zhang J. Ternary hollow mesoporous TiN/N-graphene/Pt hybrid results in enhanced electrocatalytic performance for methanol oxidation and oxygen reduction reaction. Electrochim Acta. 2016;213:771.

    CAS  Google Scholar 

  52. Hiltunen L, Leskelä M, Mäkelä M, Niinistö L, Nykänen E, Soininen P. Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method. Thin Solid Films. 1988;166:149.

    CAS  Google Scholar 

  53. RitaIa M, Leskelä M, Rauhala E, Jokinen J. Atomic layer epitaxy growth of TiN thin films from TiCl4 and NH3. J Electrochem Soc. 1998;145(8):2914.

    Google Scholar 

  54. Yang H, Zhang B, Zhang B, Gao Z, Qin Y. N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation. Chin J Catal. 2018;39(6):1038.

    CAS  Google Scholar 

  55. Zhang S, Zhang B, Liang H, Liu Y, Qiao Y, Qin Y. Encapsulation of homogeneous catalysts in mesoporous materials using diffusion-limited atomic layer deposition. Angew Chem Int Ed. 2018;57(4):1091.

    CAS  Google Scholar 

  56. Zhang J, Chen C, Chen S, Hu Q, Gao Z, Li Y, Qin Y. Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane. Catal Sci Technol. 2017;7(2):322.

    Google Scholar 

  57. Shu T, Liao S, Hsieh CT, Roy AK, Liu YY, Tzou DY, Chen WY. Fabrication of platinum electrocatalysts on carbon nanotubes using atomic layer deposition for proton exchange membrane fuel cells. Electrochim Acta. 2012;75:101.

    CAS  Google Scholar 

  58. Marichy C, Bechelany M, Pinna N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater. 2012;24(8):1017.

    CAS  Google Scholar 

  59. Liu C, Wang CC, Kei CC, Hsueh YC, Perng TP. Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells. Small. 2009;5(13):1535.

    CAS  Google Scholar 

  60. Grillo F, Bui HV, Zara DL, Aarnink AAI, Kovalgin AY, Kooyman P, Kreutzer MT, van Ommen JR. From single atoms to nanoparticles: autocatalysis and metal aggregation in atomic layer deposition of Pt on TiO2 nanopowder. Small. 2018;14(23):1800765.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shandong Provincial Natural Science Foundation (Nos. ZR2016JL007 and ZR2014JL010) and the National Natural Science Foundation of China (No. 21775078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Qi or Li-Xue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, GT., Wang, Y., Qi, Y. et al. Fabrication of titanium nitride nanoparticles onto carbon nanotubes by atomic layer deposition for utilization as Pt electrocatalyst supports. Rare Met. 39, 784–791 (2020). https://doi.org/10.1007/s12598-019-01284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01284-5

Keywords

Navigation