Skip to main content

Advertisement

Log in

A high-performance lithium anode based on N-doped composite graphene

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium (Li) metal is the most promising electrode for next-generation rechargeable batteries. In order to push the commercialization of the lithium metal batteries, a kind of nitrogen(N)-doped composite graphene (NCG) adopted as the Li plating host was prepared to regulate Li metal nucleation and suppress dendrite growth. Furthermore, a new kind of sandwich-type composite lithium metal (STCL) electrode was developed to improve its application. The STCL electrode can be used as convenient as a piece of Li foil but no dendrite growth. In a symmetric battery, the STCL electrode cycled for more than 4500 h with the overpotential of less than 40 mV. And due to the creative design, the STCL promises the Li–S battery with a prolonged cycling lifespan.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evers S, Nazar LF. New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res. 2013;46(5):1135.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Sahadeo E, Rubloff G, Lin CF, Lee SB. High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J Mater Sic. 2019;54(5):3671.

    Article  ADS  CAS  Google Scholar 

  3. Girishkumar G, Mccloskey B, Luntz AC, Swanson S, Wilcke WW. Lithium–air battery: promise and challenges. J Phy Chem Lett. 2010;1(14):2193.

    Article  CAS  Google Scholar 

  4. Zhang SS, Kang X, Read J. A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources. 2011;196(8):3906.

    Article  CAS  Google Scholar 

  5. Zhu X, Zhao TS, Tan P, Wei Z, Wu M. A high-performance solid-state lithium–oxygen battery with a ceramic-carbon nanostructured electrode. Nano Energy. 2016;26:565.

    Article  CAS  Google Scholar 

  6. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech. 2017;12(3):194.

    Article  ADS  CAS  Google Scholar 

  7. Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29(29):1700007.

    Article  Google Scholar 

  8. Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.

    Article  Google Scholar 

  9. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.

    Article  CAS  Google Scholar 

  10. Li B, Wang Y, Yang S. A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater. 2018;8(13):1702296.

    Article  Google Scholar 

  11. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

    Article  CAS  PubMed  Google Scholar 

  13. Obrovac MN, Christensen L, Le DB, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc. 2007;154(9):A849.

    Article  CAS  Google Scholar 

  14. Kim JH, Myung ST, Sun YK. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta. 2004;49(2):219.

    Article  CAS  Google Scholar 

  15. Fung YS, Zhou RQ. Room temperature molten salt as medium for lithium battery. J Power Sources. 1999;s81–82(81):891.

    Article  ADS  Google Scholar 

  16. Zhang XQ, Cheng XB, Chen X, Chong Y, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.

    Article  Google Scholar 

  17. Jia L, Wu T, Lu J. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mat Interfaces. 2016;44(8):30248.

    Article  Google Scholar 

  18. Ma G, Wen Z, Jin J, Wu MF, Zhang GX, Wu XW, Zhang JC. The enhanced performance of Li–S battery with P14YRTFSI-modified electrolyte. Solid State Ionics. 2014;262:174.

    Article  CAS  Google Scholar 

  19. Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, Wu C. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 2019;16:411.

    Article  Google Scholar 

  20. Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28(8):1705838.

    Article  Google Scholar 

  21. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853.

    Article  CAS  PubMed  Google Scholar 

  22. Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee SB, Rubloff GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.

    Article  CAS  PubMed  Google Scholar 

  23. Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources. 2014;261:112.

    Article  CAS  Google Scholar 

  24. Johanna KS, Yi D, Paul AK. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of Co-deposited sodium. J Electrochem Soc. 2013;160(9):D337.

    Article  Google Scholar 

  25. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotech. 2016;11(7):626.

    Article  ADS  CAS  Google Scholar 

  26. Zhang R, Chen X, Xiang C, Chen X, Zhang X, Chong Y, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017;129(27):7764.

    Article  Google Scholar 

  27. Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29(29):1700389.

    Article  Google Scholar 

  28. Yang G, Chen J, Xiao P, Agboola P, Shakir I, Xu Y. Graphene anchored on Cu foam as lithiophilic 3D current collectors for stable and dendrite-free lithium metal anode. J Mater Chem A. 2018;6(21):9899.

    Article  CAS  Google Scholar 

  29. Gu J, Du Z, Zhang C, Ma J, Lin B, Yang S. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv Energy Mater. 2017;7(17):1700447.

    Article  Google Scholar 

  30. Gu J, Gu Y, Yang S. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life. Chem. Comm. 2017;53(94):12642.

    Article  CAS  PubMed  Google Scholar 

  31. Gu J, Du Z, Zhang C, Yang S. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv Energy Mater. 2016;6(18):1600917.

    Article  Google Scholar 

  32. Yan K, Lu Z, Lee HW, Xiong F, Hsu P, Li Y, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy. 2016;1(3):16010.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Beijing Municipal Science and Technology Project (Nos. Z171100000917021 and Z181100004518003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Gang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Sun, HB., Zhang, L. et al. A high-performance lithium anode based on N-doped composite graphene. Rare Met. 43, 1030–1036 (2024). https://doi.org/10.1007/s12598-019-01263-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01263-w

Keywords

Navigation