Skip to main content
Log in

Stabilizing Co3O4 nanorods/N-doped graphene as advanced anode for lithium-ion batteries

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Tricobalt tetroxide (Co3O4) is one of the promising anodes for lithium-ion batteries (LIBs) due to its high theoretical capacity. However, the poor electrical conductivity and the rapid capacity decay hamper its practical application. In this work, we design and fabricate a hierarchical Co3O4 nanorods/N-doped graphene (Co3O4/NG) material by a facile hydrothermal method. The nitrogen-doped graphene layers could buffer the volume change of Co3O4 nanorods during the delithium/lithium process, increase the electrical conductivity, and profit the diffusion of ions. As an anode, the Co3O4/NG material reveals high specific capacities of 1873.8 mA·h·g−1 after 120 cycles at 0.1 A·g−1 as well as 1299.5 mA·h·g−1 after 400 cycles at 0.5 A·g−1. Such superior electrochemical performances indicate that this work may provide an effective method for the design and synthesis of other metal oxide/N-doped graphene electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z, Chen L, Feng J, et al. In-situ grown SnO2 nanospheres on reduced GO nanosheets as advanced anodes for lithium-ion batteries. ChemistryOpen, 2019, 8(6): 712–718

    Article  CAS  Google Scholar 

  2. Liu M, Deng X, Ma Y, et al. Well-designed hierarchical Co3O4 architecture as a long-life and ultrahigh rate capacity anode for advanced lithium-ion batteries. Advanced Materials Interfaces, 2017, 4(19): 1700553

    Article  CAS  Google Scholar 

  3. Chen F, Chen Z, Dai Z, et al. Self-templating synthesis of carbon-encapsulated SnO2 hollow spheres: A promising anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 816: 152495

    Article  CAS  Google Scholar 

  4. Chen Z, Wang S, Zhang Z, et al. Facile synthesis of Co3O4/Co@N-doped carbon nanotubes as anode with improved cycling stability for Li-ion batteries. Electrochimica Acta, 2018, 292: 575–585

    Article  CAS  Google Scholar 

  5. Liang C, Cheng D, Ding S, et al. The structure dependent electrochemical performance of porous Co3O4 nanoplates as anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 251: 351–356

    Article  CAS  Google Scholar 

  6. Li H, Li Z, Wu X, et al. Shale-like Co3O4 for high performance lithium/sodium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(21): 8242–8248

    Article  CAS  Google Scholar 

  7. Zhang Z, Fu Y, Yang X, et al. Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance. ChemNanoMat, 2015, 1(6): 409–114

    Article  CAS  Google Scholar 

  8. Wang Y, Zhang X, Wen G. Dual carbon protected SnO2 with superior lithium storage performance. Applied Surface Science, 2020, 531: 147331

    Article  CAS  Google Scholar 

  9. Geng C, Yu J, Shi F. Few-layers of graphene modified TiO2/graphene composites with excellent electrochemical properties for lithium-ion battery. Ionics, 2019, 25(7): 3059–3068

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang K, Ren S, et al. 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 792: 828–834

    Article  CAS  Google Scholar 

  11. Qiu W, Xiao H, Li Y, et al. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small, 2019, 15(23): 1901285

    Article  CAS  Google Scholar 

  12. Hong Y, Mao W, Hu Q, et al. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes. Journal of Power Sources, 2019, 428: 44–52

    Article  CAS  Google Scholar 

  13. Vilian A T E, Dinesh B, Rethinasabapathy M, et al. Hexagonal Co3O4 anchored reduced graphene oxide sheets for highperformance supercapacitors and non-enzymatic glucose sensing. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(29): 14367–14379

    Article  CAS  Google Scholar 

  14. Ying H, Zhang S, Meng Z, et al. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(18): 8334–8342

    Article  CAS  Google Scholar 

  15. Youn D H, Patterson N A, Park H, et al. Facile synthesis of Ge/N-doped carbon spheres with varying nitrogen content for lithium ion battery anodes. ACS Applied Materials & Interfaces, 2016, 8(41): 27788–27794

    Article  CAS  Google Scholar 

  16. Ni W, Cheng J, Shi L, et al. Integration of Sn/C yolk-shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(45): 19122–19130

    Article  CAS  Google Scholar 

  17. Huang S, Wang M, Jia P, et al. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Materials, 2019, 20: 225–233

    Article  Google Scholar 

  18. Zeng H, Xing B, Chen L, et al. Nitrogen-doped porous Co3O4/graphene nanocomposite for advanced lithium-ion batteries. Nanomaterials, 2019, 9(9): 1253

    Article  CAS  Google Scholar 

  19. Zhang J, Li F, Chen W, et al. Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochimica Acta, 2019, 300: 123–130

    Article  CAS  Google Scholar 

  20. Zhao Y, Liu C, Yi R, et al. Facile preparation of Co3O4 nanoparticles incorporating with highly conductive MXene nanosheets as high-performance anodes for lithium-ion batteries. Electrochimica Acta, 2020, 345: 136203

    Article  CAS  Google Scholar 

  21. Zhao X, Xu H, Hui Z, et al. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small, 2019, 15(47): 1904255

    Article  CAS  Google Scholar 

  22. Feng K, Park H W, Wang X, et al. High performance porous anode based on template-free synthesis of Co3O4 nanowires for lithium-ion batteries. Electrochimica Acta, 2014, 139: 145–151

    Article  CAS  Google Scholar 

  23. Yan C, Chen G, Zhou X, et al. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Advanced Functional Materials, 2016, 26(9): 1428–1436

    Article  CAS  Google Scholar 

  24. Wang S, Wang R, Chang J, et al. Self-supporting Co3O4/graphene hybrid films as binder-free anode materials for lithium ion batteries. Scientific Reports, 2018, 8(1): 3182

    Article  CAS  Google Scholar 

  25. Jing M, Zhou M, Li G, et al. Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(11): 9662–9668

    Article  CAS  Google Scholar 

  26. Wu M, Chen H, Lv L, et al. Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance. Chemical Engineering Journal, 2019, 373: 985–994

    Article  CAS  Google Scholar 

  27. Wu D, Wang C, Wu H, et al. Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries. Carbon, 2020, 163: 137–144

    Article  CAS  Google Scholar 

  28. Liu Y, Wan H, Zhang H, et al. Engineering surface structure and defect chemistry of nanoscale cubic Co3O4 crystallites for enhanced lithium and sodium storage. ACS Applied Nano Materials, 2020, 3(4): 3892–3903

    Article  CAS  Google Scholar 

  29. Wang C, Wang F, Zhang L, et al. Multi-dimensionally hierarchical self-supported Cu@Cu2 + 1O@Co3O4 heterostructure enabling superior lithium-ion storage and electrocatalytic oxygen evolution. Chemical Engineering Journal, 2021, 405: 126699

    Article  CAS  Google Scholar 

  30. Huang Y, Fang Y, Lu X F, et al. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angewandte Chemie International Edition, 2020, 59(45): 19914–19918

    Article  CAS  Google Scholar 

  31. Choi B G, Chang S J, Lee Y B, et al. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale, 2012, 4(19): 5924–5930

    Article  CAS  Google Scholar 

  32. Chen H, Jia B E, Lu X, et al. Two-dimensional SnSe2/CNTs hybrid nanostructures as anode materials for high-performance lithium-ion batteries. Chemistry, 2019, 25(42): 9973–9983

    Article  CAS  Google Scholar 

  33. Chen X, Lv L, Sun W, et al. Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(28): 13705–13716

    Article  CAS  Google Scholar 

  34. Hou B H, Wang Y Y, Ning Q L, et al. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Advanced Materials, 2019, 31(40): 1903125

    Article  CAS  Google Scholar 

  35. Xie J, Li X, Lai H, et al. A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angewandte Chemie International Edition, 2019, 58(41): 14740–14747

    Article  CAS  Google Scholar 

  36. Cook J B, Kim H-S, Lin T C, et al. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Advanced Energy Materials, 2017, 7(2): 1601283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the China Postdoctoral Science Foundation (Grant Nos. 2019M662405 and 2019M650612), the Natural Science Foundation of Shandong Province (ZR2019BF047 and ZR2020KE059), and the School City Integration in Zibo (2019ZBXC299).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqian Zhang or Guangwu Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X., Meng, F. et al. Stabilizing Co3O4 nanorods/N-doped graphene as advanced anode for lithium-ion batteries. Front. Mater. Sci. 15, 216–226 (2021). https://doi.org/10.1007/s11706-021-0552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0552-x

Keywords

Navigation