Skip to main content
Log in

In vitro biodegradability of Mg–2Gd–xZn alloys with different Zn contents and solution treatments

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

This study aims to investigate the addition of Zn on the corrosion property and cytocompatibility of Mg–2Gd–xZn (x = 0, 3, 4 and 5; wt%) alloys, which were prepared by gravity permanent mold casting and solution treatment, respectively. The results show that the intermetallic phases of these ternary alloys are mainly composed of Mg12GdZn and Mg3GdZn3. The content of secondary phases as well as the grain size is greatly dependent on the Zn addition. Compared to the binary Mg–2Gd alloy, the corrosion resistance of the most ternary alloys is significantly improved. Furthermore, the in vitro cell culture study demonstrates the potential cytocompatibility of the developed ternary alloys. It indicates that a series of Mg–2Gd–xZn (x = 0, 3, 4 and 5; wt%) with medically acceptable corrosion rate are developed and show great potential use as a new type of biodegradable implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2004;26(17):3557.

    Article  CAS  Google Scholar 

  2. Song YW, Han EH, Shan DY, Yim CD, You BS. The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros Sci. 2012;65(65):322.

    Article  CAS  Google Scholar 

  3. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77(22):1.

    Article  Google Scholar 

  4. Han HS, Loffredo S, Jun I, Edwards J, Kim YC, Seok HK, Seok HK, Witte F, Mantovani D, Glyn-Jones S. Current status and outlook on the clinical translation of biodegradable metals. Mater Today. 2018. https://doi.org/10.1016/j.mattod.2018.05.018.

    Article  Google Scholar 

  5. Wang WL, Lei NN, Hao YL, Jia JD, Lei X. Microstructures and mechanical properties of Mg–Y–Zr ignition resistance alloy with adding rare earth Ce. Chin J Rare Met. 2018;42(4):438.

    Google Scholar 

  6. Zhang HJ, Zhang DF, Ma CH, Guo SF. Improving mechanical properties and corrosion resistance of Mg–6Zn–Mn magnesium alloy by rapid solidification. Mater Lett. 2013;92:45.

    Article  CAS  Google Scholar 

  7. Zhang SX, Zhang XN, Zhao CL, Li JN, Song Y, Xie CY, Tao HR, Zhang Y, He YH, Jiang Y. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626.

    Article  CAS  Google Scholar 

  8. Kim HS, Kim GH, Kim H, Kim WJ. Enhanced corrosion resistance of high strength Mg–3Al–1Zn alloy sheets with ultrafine grains in a phosphate-buffered saline solution. Corros Sci. 2013;74(3):139.

    Article  CAS  Google Scholar 

  9. Song GL. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49(4):1696.

    Article  CAS  Google Scholar 

  10. Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, Vogt C, Drücker H, Willumeit R, Kainer KU. Magnesium alloys as implant materials-principles of property design for Mg–RE alloys. Acta Biomater. 2010;6(5):1714.

    Article  CAS  Google Scholar 

  11. KubÁSek J, VojtĚCh D. Structural and corrosion characterization of biodegradable Mg–RE (RE = Gd, Y, Nd) alloys. Trans Nonferrous Met Soc. 2013;23(5):1215.

    Article  CAS  Google Scholar 

  12. Yang L, Huang Y, Feyerabend F, Willumeit R, Mendis C, Kainer KU, Hort N. Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomater. 2013;9(10):8499.

    Article  CAS  Google Scholar 

  13. Zhang XB, Wu YJ, Xue YJ, Wang ZZ, Yang L. Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater Lett. 2012;86:42.

    Article  CAS  Google Scholar 

  14. Srinivasan A, Blawert C, Huang Y, Mendis CL, Kainer KU, Hort N. Corrosion behavior of Mg–Gd–Zn based alloys in aqueous NaCl solution. J Magn Alloy. 2014;2(3):245.

    Article  CAS  Google Scholar 

  15. Balasubramani N, Pillai UTS, Pai BC. Effect of Zn concentration on the microstructure and phase formation of Mg–5Gd alloy. J Alloy Compd. 2007;460(1–2):L6.

    Google Scholar 

  16. Apps PJ, Karimzadeh H, King JF, Lorimer GW. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scr Mater. 2003;48(5):475.

    Article  CAS  Google Scholar 

  17. Nie JF, Gao X, Zhu SM. Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr Mater. 2005;53(9):1049.

    Article  CAS  Google Scholar 

  18. Zhang XB, Xue YJ, Wang ZZ. Effect of heat treatment on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Mg–2.7Nd–0.2Zn–0.4Zr alloy. Trans Nonferrous Met Soc. 2012;22(10):2343.

    Article  CAS  Google Scholar 

  19. Gao L, Chen RS, Han EH. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J Alloy Compd. 2009;481(1):379.

    Article  CAS  Google Scholar 

  20. Peng QM, Wang JL, Wu YM, Wang LM. Microstructures and tensile properties of Mg–8Gd–0.6Zr–xNd–yY (x+y=3, mass%) alloys. Mater Sci Eng A. 2006;433(1):133.

    Article  CAS  Google Scholar 

  21. Gao X, He SM, Zeng XQ, Peng LM, Ding WJ, Nie JF. Microstructure evolution in a Mg–15Gd–0.5Zr (wt%) alloy during isothermal aging at 250 °C. Mater Sci Eng A. 2006;431(1):322.

    Article  CAS  Google Scholar 

  22. Ozaki T, Kuroki Y, Yamada K, Hoshikawa H, Kamado S, Kojima Y. Mechanical properties of newly developed age hardenable Mg–3.2 mol%Gd–0.5 mol%Zn casting alloy. Mater Trans. 2008;49(10):2185.

    Article  CAS  Google Scholar 

  23. Wu D, Chen RS, Han EH. Serrated flow and tensile properties of a Mg–Gd–Zn alloy. Mater Sci Eng A. 2012;532:267.

    Article  CAS  Google Scholar 

  24. Wu D, Chen RS, Tang WN, Han EH. Influence of texture and grain size on the room-temperature ductility and tensile behavior in a Mg–Gd–Zn alloy processed by rolling and forging. Mater Des. 2012;41:306.

    Article  CAS  Google Scholar 

  25. Schlüter K, Shi ZM, Zamponi C, Cao FY, Quandt E, Atrens A. Corrosion performance and mechanical properties of sputter-deposited MgY and MgGd alloys. Corros Sci. 2013;78(78):43.

    Google Scholar 

  26. Srinivasan A, Huang Y, Mendis CL, Blawert C, Kainer KU, Hort N. Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Mater Sci Eng A. 2014;595(3):224.

    Article  CAS  Google Scholar 

  27. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57(9):386.

    Article  CAS  Google Scholar 

  28. Wang JL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.

    Article  CAS  Google Scholar 

  29. Abidin NIZ, Atrens AD, Martin D, Atrens A. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C. Corros Sci. 2011;53(11):3542.

    Article  CAS  Google Scholar 

  30. Lu Y, Bradshaw AR, Chiu YL, Jones IP. Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater Sci Eng C. 2015;48:480.

    Article  CAS  Google Scholar 

  31. Bakhsheshi-Rada HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des. 2013;53(1):283.

    Google Scholar 

  32. Argade GR, Panigrahi SK, Mishra RS. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci. 2012;58:145.

    Article  CAS  Google Scholar 

  33. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1(11):11.

    Article  CAS  Google Scholar 

  34. Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Corrosion. 2010;63(12):1201.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 31300808 and 31400815), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 201417) and the Natural Science Foundation of Shanxi Province (No. 2013021011-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Deng, WL., Yang, XN. et al. In vitro biodegradability of Mg–2Gd–xZn alloys with different Zn contents and solution treatments. Rare Met. 38, 620–628 (2019). https://doi.org/10.1007/s12598-019-01220-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01220-7

Keywords

Navigation