Skip to main content
Log in

Mechanical properties of Fe-based amorphous–crystalline composite: a molecular dynamics simulation and experimental study

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A new Fe-based amorphous–crystalline composite without non-metallic elements, Fe55Cr15Mo15Ni10W5, was prepared by melt-spinning. The formation ability and structure information were investigated by X-ray diffractometer (XRD), energy-dispersive spectrometer (EDS) and scanning electron microscope (SEM). The mechanical properties of the amorphous–crystalline composite were investigated by nanoindentation. A molecular dynamics simulation study was performed to simulate the formation of Fe55Cr15Mo15Ni10W5 amorphous alloy. The mechanical properties were obtained by compression simulations simultaneously. The results indicate that the Fe55Cr15Mo15Ni10W5 ribbon is an amorphous–crystalline composite structure with good ductility, and the hardness of the amorphous–crystalline composite is about 75% higher than that of master ingot. The simulation mechanical properties are in good agreement with the results of nanoindentation at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55(8):759.

    Article  CAS  Google Scholar 

  2. Kim YC, Hwang BC. Effects of metalloid elements on the mechanical properties of Fe-based bulk amorphous alloys. Korean J Mater Res. 2016;26(12):671.

    Article  CAS  Google Scholar 

  3. Dong J, Gao M, Huan Y, Feng YH, Liu W, Wang WH. Enhanced tensile plasticity of Zr based bulk metallic glasses by a stress induced large scale flow. J Alloys Compd. 2017;727:297.

    Article  CAS  Google Scholar 

  4. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279.

    Article  CAS  Google Scholar 

  5. Li Q, Liu SS, Wang XH, Yang T, Dong C, Hu JT, Jiang YQ. Mechanical and corrosion properties of Ti–Ni–Cu–Zr metallic glass matrix composites. J Alloys Compd. 2017;727:1344.

    Article  CAS  Google Scholar 

  6. Yang S, Li D, Li XC, Zhang ZZ, Zhang SF, He L. Composition dependence of the microstructure and mechanical behavior of Ti–Zr–Cu–Pd–Sn–Nb bulk metallic glass composites. Intermetallics. 2017;90:1.

    Article  Google Scholar 

  7. Zhang N, Liu Y, Yang W, Pang SJ. Formation and properties of a Zr-based amorphous coating by laser cladding. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1113-z.

    Article  Google Scholar 

  8. Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties. Rare Met. 2017. https://doi.org/10.1007/s12598-016-0860-y.

    Article  Google Scholar 

  9. Zhang GP, Liu Y, Zhang B. Effect of annealing close to Tg on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications. Scripta Mater. 2006;54(5):897.

    Article  CAS  Google Scholar 

  10. Wang G, Guo CX, Pang SJ. Thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nd addition. Rare Met. 2017;36(3):183.

    Article  CAS  Google Scholar 

  11. Wang G, Huang YJ, Makhanlall D, Shen J. Resistance spot welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass: experiments and finite element modeling. Rare Met. 2017;36(2):123.

    Article  CAS  Google Scholar 

  12. Chen LY, Hu HT, Zhang GQ, Jiang JZ. Catching the Ni-based ternary metallic glasses with critical diameter up to 3 mm in Ni–Nb–Zr system. J Alloys Compd. 2007;443(1–2):109.

    Article  CAS  Google Scholar 

  13. Li J, Wang X, Yang G, Chen N, Liu X, Yao K. Enhanced plasticity of a Fe-based bulk amorphous alloy by thin Ni coating. Mat Sci Eng A. 2015;645:318.

    Article  CAS  Google Scholar 

  14. Sun BA, Wang WH. The fracture of bulk metallic glasses. Prog Mater Sci. 2015;74:211.

    Article  CAS  Google Scholar 

  15. Wei R, Chang Y, Yang S, Zhang CJ, He L. Strain rate sensitivity variation in CuZr-based bulk metallic glass composites containing B2-CuZr phase. Rare Met Mater Eng. 2016;45(3):542.

    Article  CAS  Google Scholar 

  16. Rud AD, Schmidt U, Zelinska GM, Lakhnik AM, Kolbasov GY, Danilov MO. Atomic structure and hydrogen storage properties of amorphous–quasicrystalline Zr–Cu–Ni–Al melt-spun ribbons. J Non-Cryst Solids. 2007;353(32–40):3434.

    Article  CAS  Google Scholar 

  17. Zhao K, Xia XX, Bai HY, Zhao DQ, Wang WH. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl Phys Lett. 2011;98(14):141913.

    Article  Google Scholar 

  18. Shen J, Chen QJ, Sun JF, Fan HB, Wang G. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl Phys Lett. 2005;86(15):151907.

    Article  Google Scholar 

  19. Eckert J, Das J, Pauly S, Duhamel C. Mechanical properties of bulk metallic glasses and composites. J Mater Res. 2007;22(02):285.

    Article  CAS  Google Scholar 

  20. Guo SF, Liu L, Li N, Li Y. Fe-based bulk metallic glass matrix composite with large plasticity. Scripta Mater. 2010;62(6):329.

    Article  CAS  Google Scholar 

  21. Xiao ZY, Luo F, Tang CY, Chen L, Ngai TL. Study of amorphous phase in Fe100−x(NbTiTa)x alloys synthesized by mechanical alloying and its effect on the crystallization phenomenon. J Non-Cryst Solids. 2014;385:117.

    Article  CAS  Google Scholar 

  22. Wang XY, Gong P, Deng L, Jin JS, Wang SB, Li FW. Sub-Tg annealing effect on the kinetics of glass transition and crystallization for a Ti-Zr-Be-Fe bulk metallic glass. J Non-Cryst Solids. 2017;473:132.

    Article  CAS  Google Scholar 

  23. Qiu C, Zhu PZ, Fang FZ, Yuan DD, Shen XC. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci. 2014;305:101.

    Article  CAS  Google Scholar 

  24. Zhou XL, Chen CQ. Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. Int J Plast. 2016;80:75.

    Article  CAS  Google Scholar 

  25. Zhang WB, Li Q, Duan HM. Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations. J Appl Phys. 2015;117(10):104901.

    Article  Google Scholar 

  26. Deibler LA, Lewandowski J. Model experiments to mimic fracture surface features in metallic glasses. Mater Sci Eng A. 2010;527(9):2207.

    Article  Google Scholar 

  27. Basu S, Moseson A, Barsoum MW. On the determination of spherical nanoindentation stress–strain curves. J Mater Res. 2006;21(10):2628.

    Article  CAS  Google Scholar 

  28. Dean J, Wheeler JM, Clyne TW. Use of quasi-static nanoindentation data to obtain stress–strain characteristics for metallic materials. Acta Mater. 2010;58(10):3613.

    Article  CAS  Google Scholar 

  29. Pang JJ, Tan MJ, Liew KM, Shearwood C. Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7. Phys B Condens Matter. 2012;407(3):340.

    Article  CAS  Google Scholar 

  30. Uchic Md, Dm Dimiduk, Jn Florando, Nix Wd. Sample dimensions influence strength and crystal plasticity. Science. 2004;305(5686):986.

    Article  CAS  Google Scholar 

  31. Safarik DJ, Schwarz RB. Elastic constants of amorphous and single-crystal Pd40Cu40P20. Acta Mater. 2007;55(17):5736.

    Article  CAS  Google Scholar 

  32. Johnson WL, Lu J, Demetriou MD. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids—a self consistent dynamic free volume model. Intermetallics. 2002;10(11):1039.

    Article  CAS  Google Scholar 

  33. Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci. 2012;57(3):487.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (No. 2016YFC0801905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, HW., Shu, XY., Li, Y. et al. Mechanical properties of Fe-based amorphous–crystalline composite: a molecular dynamics simulation and experimental study. Rare Met. 40, 2560–2567 (2021). https://doi.org/10.1007/s12598-018-1183-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1183-y

Keywords

Navigation