Skip to main content

Advertisement

Log in

Microstructure, mechanical properties and stress corrosion behavior of friction stir welded joint of Al–Mg–Si alloy extrusion

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Microstructure, mechanical properties and stress corrosion behavior of friction stir welded (FSWed) Al–Mg–Si alloy were investigated. The average grain sizes of shoulder-affected zone (SAZ), nugget zone (NZ), heat-affected zone (HAZ) and base material (BM) are 6.03, 4.80, 168.30 and 127.24 μm, respectively. The thermo-mechanically affected zone (TMAZ), which is generated on the edge position between HAZ and weld nugget zone, has a narrow width of 400 μm. The ultimate tensile strength (UTS) of FSWed joint is 232.20 MPa, about 91.04% with respect to that of base material of 255.06 MPa, and the joint fracture occurs at HAZ on advancing side (AS). The FSWed joint is more susceptive to stress corrosion cracking (SCC) than base material, and the SCC susceptibility increases with the rise in temperature. The residual UTS of FSWed joints in constant loaded tests at the load levels of 90, 105 and 120 MPa is 89.97%, 67.50% and 54.75% of the UST of FSWed joint in air, respectively. The increase of the load in constant loaded tests and four-point beam-bent tests accelerates the SCC of FSWed joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang F, Su XK, Chen ZY, Nie ZR. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Mater Des. 2015;67:483.

    Article  CAS  Google Scholar 

  2. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1):1.

    Article  Google Scholar 

  3. Sun YF, Fujii H, Tsuji N. Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys. Mater Sci Eng A. 2013;585:17.

    Article  CAS  Google Scholar 

  4. Mohammadi-pour M, Khodabandeh A, Mohammadi-pour S, Paidar M. Microstructure and mechanical properties of joints welded by friction-stir welding in aluminum alloy 7075-T6 plates for aerospace application. Rare Metals. 2016. https://doi.org/10.1007/s12598-016-0692-9.

    Article  Google Scholar 

  5. Fahimpour V, Sadrnezhaad SK, Karimzadeh F. Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Mater Des. 2012;39:329.

    Article  CAS  Google Scholar 

  6. Lee HK, Park SY, Kang CY. Effect of plasma current on surface defects of plasma-MIG welding in cryogenic aluminum alloys. J Mater Process Technol. 2015;223:203.

    Article  CAS  Google Scholar 

  7. Den Bakker AJ, Werkhoven RJ, Sillekens WH, Katgerman L. The origin of weld seam defects related to metal flow in the hot extrusion of aluminium alloys EN AW-6060 and EN AW-6082. J Mater Process Technol. 2014;214(11):2349.

    Article  Google Scholar 

  8. Shahri MM, Sandström R, Osikowicz W. Critical distance method to estimate the fatigue life time of friction stir welded profiles. Int J Fatigue. 2012;37:60.

    Article  CAS  Google Scholar 

  9. Mishra RS, Komarasamy M. Friction Stir Welding of High Strength 7XXX Aluminum Alloys. Oxford: Butterworth-Heinemann; 2016. 1.

    Book  Google Scholar 

  10. Esmaily M, Mortazavi N, Osikowicz W, Hindsefelt H, Svensson JE, Halvarsson M, Thompson GE, Johansson LG. Corrosion behaviour of friction stir-welded AA6005-T6 using a bobbin tool. Corros Sci. 2016;111:98.

    Article  CAS  Google Scholar 

  11. Hamada AS, Järvenpää A, Ahmed MMZ, Jaskari M. WynneBP, Porter DA, Karjalainen LP. The microstructural evolution of friction stir welded AA6082-T6 aluminum alloy during cyclic deformation. Mater Sci Eng A. 2015;642:366.

    Article  CAS  Google Scholar 

  12. Bertoncello JCB, Manhabosco SM, Dick LFP. Corrosion study of the friction stir lap joint of AA7050-T76511 on AA2024-T3 using the scanning vibrating electrode technique. Corros Sci. 2015;94:359.

    Article  CAS  Google Scholar 

  13. Eftekharinia H, Amadeh AA, Khodabandeh A, Paidar M. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Metals. 2016. https://doi.org/10.1007/s12598-016-0691-x.

    Article  Google Scholar 

  14. Deng Y, Peng B, Xu GF, Pan QL, Yin ZM, Ye R, Wang YJ, Lu LY. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys. Mater Sci Eng A. 2015;639:500.

    Article  CAS  Google Scholar 

  15. Deng Y, Peng B, Xu GF, Ql Pan, Ye R, Wang YJ, Lu LY, Yin ZM. Stress corrosion cracking of a high-strength friction-stir-welded joint of an Al–Zn–Mg–Zr alloy containing 0.25 wt% Sc. Corros Sci. 2015;100:57.

    Article  CAS  Google Scholar 

  16. Fu BL, Qin GL, Li F, Meng XM, Zhang JZ, Wu CS. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol. 2015;218:38.

    Article  CAS  Google Scholar 

  17. Mahto RP, Bhoje R, Pal SK, Joshi HS, Das S. A study on mechanical properties in friction stir lap welding of AA 6061-T6 and AISI 304. Mater Sci Eng A. 2016;652:136.

    Article  CAS  Google Scholar 

  18. Dong YY, Zhang CS, Zhao GQ, Guan YJ, Gao AJ, Sun WC. Constitutive equation and processing maps of an Al–Mg–Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater Des. 2016;92:983.

    Article  CAS  Google Scholar 

  19. Li H, Zhao PP, Wang ZX, Mao QZ, Fang BJ, Song RG, Zheng ZQ. The intergranular corrosion susceptibility of a heavily overaged Al–Mg–Si–Cu alloy. Corros Sci. 2016;107:113.

    Article  CAS  Google Scholar 

  20. Lacki P, Derlatka A. Strength evaluation of beam made of the aluminum 6061-T6 and titanium grade 5 alloys sheets joined by RFSSW and RSW. Compos Struct. 2017;159:491.

    Article  Google Scholar 

  21. Laurino A, Andrieu E, Harouard JP, Odemer G, Salabura JC, Blanc C. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des. 2014;53:236.

    Article  CAS  Google Scholar 

  22. Liu WX, Qiu Q, Chen YQ, Tang CP, Tang JG. Texture evolution and mechanical properties of 6016 aluminum alloys as equal channel angular rolling at different preheat temperature. Chin J Rare Metals. 2018;42(6):586.

    Google Scholar 

  23. Maisonnette D, Suery M, Nelias D, Chaudet P, Epicier T. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater Sci Eng A. 2011;528(6):2718.

    Article  Google Scholar 

  24. Yuan SP, Liu G, Wang RH, Zhang GJ, Pu X, Sun J, Chen KH. Effect of precipitate morphology evolution on the strength–toughness relationship in Al–Mg–Si alloys. Scr Mater. 2009;60(12):1109.

    Article  CAS  Google Scholar 

  25. Chen R, Xu QY, Guo HT, Xia ZY, Wu QF, Liu BC. Modeling microstructure and yield strength during solidification and heat treatment process in Al–7Si–Mg cast aluminum alloys. Chin J Rare Metals. 2017;41(8):837.

    Google Scholar 

  26. Ji SD, Meng XC, Liu JG, Zhang LG, Gao SS. Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy. Mater Des (1980–2015). 2014;62:113.

    Article  CAS  Google Scholar 

  27. Xiao T, Deng YL, Ye LY, Lin HQ, Shan CJ, Qian PW. Effect of three-stage homogenization on mechanical properties and stress corrosion cracking of Al–Zn–Mg–Zr alloys. Mater Sci Eng A. 2016;675:280.

    Article  CAS  Google Scholar 

  28. Lee KJ, Kwon EP. Microstructure of stir zone in dissimilar friction stir welds of AA6061-T6 and AZ31 alloy sheets. Trans Nonferr Metals Soc Chin. 2014;24(7):2374.

    Article  CAS  Google Scholar 

  29. Chen XG, Silva MD, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063–B 4 C metal matrix composites. Mater Sci Eng A. 2009;518(1):174.

    Article  Google Scholar 

  30. Malopheyev S, Vysotskiy I, Kulitskiy V, Mironov S, Kaibyshev R. Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Mater Sci Eng A. 2016;662:136.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Scientific Research and Technology Development Program of Guangxi (No.AA16380036), the National Key Research and Development Program of China (Nos.2016YFB0300901 and 2017YFB0306301), the National Natural Science Foundation of China (Nos.51375503 and 51705539) and the BaGui Scholars Program of China’s Guangxi Zhuang Autonomous Region (No.2013A017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ying Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Deng, YL., Lin, HQ. et al. Microstructure, mechanical properties and stress corrosion behavior of friction stir welded joint of Al–Mg–Si alloy extrusion. Rare Met. 42, 2057–2067 (2023). https://doi.org/10.1007/s12598-018-1126-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1126-7

Keywords

Navigation