Skip to main content

Advertisement

Log in

Microstructural evolution and mechanical behavior of in situ synthesized MgAl2O4 whiskers reinforced 6061 Al alloy composite after hot extrusion and annealing

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In situ synthesized MgAl2O4 whiskers reinforced 6061 Al alloy composites were fabricated by a powder metallurgy method. Nano-sized MgAl2O4 spinel whiskers distributed uniformly in 6061 Al alloy matrix without any interfacial product and laid along the extrusion direction after hot extrusion. As-extruded composite samples were annealed at 530, 580, 600 and 630 °C for 1 h and examined by electron backscattered diffraction to investigate the recrystallization behavior of obtained composites. Microstructure and texture evolution was investigated, and it is found that the recrystallization process is inhibited by whiskers because of Zener pinning. Slender fibrous grains remain until 630 °C, and deformation textures still exist even in specimen annealed at 630 °C. Hardness and tensile tests show that the completely recrystallized sample has an ultimate tensile strength of 218 MPa and a hardness of HV 52 compared with 283 MPa and HV 69 of the unannealed sample. Mechanical properties of the annealed samples decline slightly with annealing temperature increasing up to 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev. 2013;55(1):41.

    Article  Google Scholar 

  2. Prater T. Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut. 2014;93:366.

    Article  CAS  Google Scholar 

  3. Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R. 2000;29(3):49.

    Article  Google Scholar 

  4. He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater. 2007;19(8):1128.

    Article  CAS  Google Scholar 

  5. Guo C, Zou T, Shi C, Yang X, Zhao N, Liu E, He C. Compressive properties and energy absorption of aluminum composite foams reinforced by in situ generated MgAl2O4 whiskers. Mater Sci Eng A. 2015;645:1.

    Article  CAS  Google Scholar 

  6. Yu Z, Zhao N, Liu E, Shi C, Du X, Wang J. Fabrication of aluminum matrix composites with enhanced mechanical properties reinforced by in situ generated MgAl2O4 whiskers. Compos Part A Appl Sci Manuf. 2012;43(4):631.

    Article  CAS  Google Scholar 

  7. Zhou Y, Zhao N, Shi C, Liu E, Du X, He C. In-situ processing and aging behaviors of MgAl2O4 spinel whisker reinforced 6061Al composite. Mater Sci Eng A. 2014;598:114.

    Article  CAS  Google Scholar 

  8. Xing L, Zhang Y, Shi C, Zhou Y, Zhao N, Liu E, He C. In-situ synthesis of MgAl2O4 nanowhiskers reinforced 6061 aluminum alloy composites by reaction hot pressing. Mater Sci Eng A. 2014;617:235.

    Article  CAS  Google Scholar 

  9. Wei H, Li Z, Xiong DB, Tan Z, Fan G, Qin Z, Zhang D. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr Mater. 2014;75:30.

    Article  CAS  Google Scholar 

  10. Chen CG, Luo J, Guo ZM, Yang WW, Chen J. Microstructural evolution and mechanical properties of in situ TiB2/Al composites under high-intensity ultrasound. Rare Met. 2015;34(3):168.

    Article  Google Scholar 

  11. Sreekumar VM, Pillai RM, Pai BC, Chakraborty M. A study on the thermodynamics of in situ MgAl2O4/Al MMC formation using amorphous silica sources. J Mater Process Technol. 2007;192–193:588.

    Article  Google Scholar 

  12. Mao CH, Sun XD, Liang QS, Yang J, Du J. Interfacial reaction process of the hot-pressed WC/2024Al composite. Rare Met. 2013;32(4):397.

    Article  CAS  Google Scholar 

  13. Engler O, Hirsch J. Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater Sci Eng A. 2002;336(1–2):249.

    Article  Google Scholar 

  14. Huang K, Li YJ, Marthinsen K. Factors affecting the strength of P{011} <566>-texture after annealing of a cold-rolled Al–Mn–Fe–Si alloy. J Mater Sci. 2015;50(14):5091.

    Article  CAS  Google Scholar 

  15. Deng Y, Zhang Y, Wan L, Zhang X. Effects of thermomechanical processing on production of Al–Zn–Mg–Cu alloy plate. Mater Sci Eng A. 2012;554:33.

    Article  CAS  Google Scholar 

  16. Deng Y, Xu G, Yin Z, Lei X, Huang J. Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al–Zn–Mg alloys. J Alloys Compd. 2013;580:412.

    Article  CAS  Google Scholar 

  17. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238(2):219.

    Article  Google Scholar 

  18. Duan YL, Xu GF, Peng XY, Deng Y, Li Z, Yin ZM. Effect of Sc and Zr additions on grain stability and superplasticity of the simple thermal–mechanical processed Al–Zn–Mg alloy sheet. Mater Sci Eng A. 2015;648:80.

    Article  CAS  Google Scholar 

  19. Nikulin I, Kipelova A, Malopheyev S, Kaibyshev R. Effect of second phase particles on grain refinement during equal-channel angular pressing of an Al–Mg–Mn alloy. Acta Mater. 2012;60(2):487.

    Article  CAS  Google Scholar 

  20. Li H, Gao Z, Yin H, Jiang H, Su X, Bin J. Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum. Scr Mater. 2013;68(1):59.

    Article  CAS  Google Scholar 

  21. Deng Y, Peng B, Xu G, Pan Q, Yin Z, Ye R, Wang Y, Lu L. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys. Mater Sci Eng A. 2015;639:500.

    Article  CAS  Google Scholar 

  22. Jiang X, Galano M, Audebert F. Extrusion textures in Al, 6061 alloy and 6061/SiCp nanocomposites. Mater Charact. 2014;88:111.

    Article  CAS  Google Scholar 

  23. Kumar P, Kawasaki M, Langdon TG. Review: overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J Mater Sci. 2015;51(1):7.

    Article  Google Scholar 

  24. Huang K, Logé RE, Marthinsen K. On the sluggish recrystallization of a cold-rolled Al–Mn–Fe–Si alloy. J Mater Sci. 2015;51(3):1632.

    Article  Google Scholar 

  25. Yan LZ, Zhang YA, Xiong BQ, Li XW, Li ZH, Liu HW, Huang SH, Zhao G. Mechanical properties, microstructure and surface quality of Al-1.2Mg-0.6Si-0.2Cu alloy after solution heat treatment. Rare Met. 2017;36(7):550.

    Article  CAS  Google Scholar 

  26. Zhang JX, Zhang KL, Liu YT, Zhong L. Microstructure and texture evolution of 6016 aluminum alloy during hot compressing deformation. Rare Met. 2014;33(4):404.

    Article  CAS  Google Scholar 

  27. Zhang WL, Gu MY, Wang DZ, Yao ZK. Rolling and annealing textures of a SiCw/Al composite. Mater Lett. 2004;58(27–28):3414.

    Article  CAS  Google Scholar 

  28. Soltani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Jiang ZY, Fadavi Boostani A, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2017;36(7):581.

    Article  CAS  Google Scholar 

  29. Poudens A, Bacroix B. Recrystallization textures in Al–SiC metal matrix composites. Scr Mater. 1996;34(6):847.

    Article  CAS  Google Scholar 

  30. Wu LM, Wang WH, Hsu YF, Trong S. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J Alloys Compd. 2008;456(1–2):163.

    Article  CAS  Google Scholar 

  31. Liu J, Yao P, Zhao N, Shi C, Li H, Li X, Xi D, Yang S. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys. J Alloys Compd. 2016;657:717.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51571147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Sheng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, G., Shi, CS., Zhao, NQ. et al. Microstructural evolution and mechanical behavior of in situ synthesized MgAl2O4 whiskers reinforced 6061 Al alloy composite after hot extrusion and annealing. Rare Met. 42, 1732–1742 (2023). https://doi.org/10.1007/s12598-018-1119-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1119-6

Keywords

Navigation