Skip to main content
Log in

Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A series of 0.2 wt% Pd/Sn0.9Ce0.1O2 catalysts were prepared by impregnation method based on the pre-synthesis of Sn0.9Ce0.1O2 support prepared by co-precipitation method, and then characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, CO chemical adsorption and hydrogen temperature-programmed reduction (H2-TPR) techniques. The effect of calcination temperature of the composite oxide support on the catalytic performances of the Pd/Sn0.9Ce0.1O2 catalyst for the CH4 total oxidation was studied. It is found that the catalytic activity of the Pd/Sn0.9Ce0.1O2 catalyst increases with the increase in calcination temperature of the Pd/Sn0.9Ce0.1O2 support. The 0.2 wt% Pd/Sn0.9Ce0.1O2/1100 catalyst (the Pd/Sn0.9Ce0.1O2 support was calcined at 1100 °C) exhibits the best reactive activity (T10 = 255 °C). The excellent activity of the 0.2 wt% Pd/Sn0.9Ce0.1O2/1100 catalyst should be attributed to the high reducibility of PdO, the excellent oxygen mobility of the support and the high content of active Pd2+ species on the Pd/Sn0.9Ce0.1O2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature. 1991;352(6332):225.

    Article  CAS  Google Scholar 

  2. Liu HF, Liu RS, Liew KY, Johnson RE, Lunsford JH. Partial oxidation of methane by nitrous oxide over molybdenum on silica. J Am Chem Soc. 1984;106(15):4117.

    Article  CAS  Google Scholar 

  3. Hutchings GJ, Scurrell MS, Woodhouse JR. Oxidative coupling of methane using oxide catalysts. Chem Soc Rev. 1989;18(18):251.

    Article  CAS  Google Scholar 

  4. Lee JS, Oyama ST. Oxidative coupling of methane to higher hydrocarbons. Catal Rev. 1988;30(2):249.

    Article  CAS  Google Scholar 

  5. Hu LH, Peng Q, Li YD. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc. 2008;130(48):16136.

    Article  CAS  Google Scholar 

  6. Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A. Catalytic combustion of methane over palladium-based catalysis. Catal Rev. 2002;44(4):593.

    Article  CAS  Google Scholar 

  7. Lou Y, Ma J, Hu W, Dai Q, Wang L, Zhan WC, Guo YL, Cao XM, Guo Y, Hu P, Lu GZ. Low-temperature methane combustion over Pd/H-ZSM-5: active Pd sites with specific electronic properties modulated by acidic sites of H-ZSM-5. ACS Catal. 2016;6(12):8127.

    Article  CAS  Google Scholar 

  8. Thevenin PO, Menon PG, Jaras SG. Catalytic total oxidation of methane. Part II. Catalytic processes to convert methane: partial or total oxidation. Cattech. 2003;7(1):10.

    Article  CAS  Google Scholar 

  9. Zhan WC, Guo Y, Gong XQ, Guo YL, Wang YQ, Lu GZ. Current status and perspectives of rare earth catalytic materials and catalysis. Chin J Catal. 2014;35(8):1238.

    Article  CAS  Google Scholar 

  10. Forzatti P. Status and perspectives of catalytic combustion for gas turbines. Catal Today. 2003;83(1–4):3.

    Article  CAS  Google Scholar 

  11. Barbier J, Leger JM, Lunot C. Catalysis for energy: fuel cells and catalytic combustion. Actual Chimique. 2002;5–6:26.

    Google Scholar 

  12. Krcha MD, Mayernick AD, Janik MJ. Periodic trends of oxygen vacancy formation and C–H bond activation over transition metal-doped CeO2 (111) surfaces. J Catal. 2012;293(18):103.

    Article  CAS  Google Scholar 

  13. Li HY, Guo YL, Guo Y, Lu GZ. C–H bond activation over metal oxides: a new insight into the dissociation kinetics from density functional theory. J Chem Phys. 2008;128(5):051101.

    Article  CAS  Google Scholar 

  14. Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1.

    Article  CAS  Google Scholar 

  15. Walker AV, King DA. Dynamics of dissociative methane adsorption on metals: CH4 on Pt{110}(1x2). J Chem Phys. 2000;112(10):4739.

    Article  CAS  Google Scholar 

  16. Zhang QF, Wu XP, Zhao GF, Li YK, Wang CZ, Liu Y, Gong XQ, Lu Y. High-performance PdNi alloy structured in situ on monolithic metal foam for coalbed methane deoxygenation via catalytic combustion. Chem Commun. 2015;51(63):12613.

    Article  CAS  Google Scholar 

  17. Jørgensen M, Grönbeck H. First-principles microkinetic modeling of methane oxidation over Pd(100) and Pd(111). ACS Catal. 2016;6(10):6730.

    Article  CAS  Google Scholar 

  18. Broclawik E, Yamauchi R, Endou A, Kubo M, Miyamoto A. Density functional study on the activation of methane over Pd2, PdO, and Pd2O clusters. Int J Quantum Chem. 1997;61(4):673.

    Article  CAS  Google Scholar 

  19. Kucharczyk B. Activity of monolithic Pd/Al2O3 catalysts in the combustion of mine ventilation air methane. Pol J Chem Technol. 2011;13(4):57.

    Article  Google Scholar 

  20. Stasinska B, Machocki A, Antoniak K, Rotko M, Figueiredo JL, Goncalves F. Importance of palladium dispersion in Pd/Al2O3 catalysts for complete oxidation of humid low-methane-air mixtures. Catal Today. 2008;137(2):329.

    Article  CAS  Google Scholar 

  21. Dai QG, Bai SX, Lou Y, Wang XY, Guo Y, Lu GZ. Sandwich-like PdO/CeO2 nanosheet@HZSM-5 membrane hybrid composite for methane combustion: self-redispersion, sintering-resistance and oxygen, water-tolerance. Nanoscale. 2016;8(18):9621.

    Article  CAS  Google Scholar 

  22. Kinnunen NM, Hirvi JT, Suvanto M, Pakkanen TA. Procedure to tailor activity of methane combustion catalyst: relation between Pd/PdOx active sites and methane oxidation activity. Appl Catal A-Gen. 2011;397(1):54.

    Article  CAS  Google Scholar 

  23. Hellman A, Resta A, Martin NM, Gustafson J, Trinchero A. The active phase of palladium during methane oxidation. J Phys Chem Lett. 2012;3(6):678.

    Article  CAS  Google Scholar 

  24. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J Catal. 1998;179(2):431.

    Article  CAS  Google Scholar 

  25. Yashnik S, Ismagilov ZR. Dependence of synergetic effect of palladium-manganese-hexaaluminate combustion catalyst on nature of palladium precursor. Top Catal. 2012;55(11):818.

    Article  CAS  Google Scholar 

  26. Kinnunen NM, Suvanto M, Moreno MA, Savimaki A, Kallinen K, Kinnunen TJJ, Pakkanen TA. Methane oxidation on alumina supported palladium catalysts: effect of Pd precursor and solvent. Appl Catal A-Gen. 2009;370(1–2):78.

    Article  CAS  Google Scholar 

  27. Park JH, Cho JH, Kim YJ, Kim ES, Han HS, Shin CH. Hydrothermal stability of Pd/ZrO2 catalysts for high temperature methane combustion. Appl Catal B-Environ. 2014;160–161:135.

    Article  CAS  Google Scholar 

  28. Yoshida H, Nakajima T, Yazawa Y, Hattori T. Support effect on methane combustion over palladium catalysts. Appl Catal B-Environ. 2007;71(1–2):70.

    Article  CAS  Google Scholar 

  29. Zou XL, Rui ZB, Song SQ, Ji HB. Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3. J Catal. 2016;338:192.

    Article  CAS  Google Scholar 

  30. Oh SH, Mitchell PJ, Siewert RM. Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives. J Catal. 1991;132(2):287.

    Article  CAS  Google Scholar 

  31. Senftle TP, Duin ACTV, Janik MJ. Role of site stability in methane activation on PdxCe1–xOδ surfaces. ACS Catal. 2015;5(10):6187.

    Article  CAS  Google Scholar 

  32. Lei FL, Li ZS, Ye LT, Wang YL, Lin S. One-pot synthesis of Pt/SnO2/GNs and its electro-photo-synergistic catalysis for methanol oxidation. Int J Hydrogen Energ. 2016;41(1):255.

    Article  CAS  Google Scholar 

  33. Liu C, Xian H, Jiang Z, Wang LH, Zhang J, Zheng LR, Tan YS, Li XG. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Appl Catal B. 2015;176:542.

    Article  CAS  Google Scholar 

  34. Yao XJ, Xiong Y, Zou WX, Zhang L, Wu SG, Dong X, Gao F, Deng Y, Tang CJ, Chen Z, Dong L, Chen Y. Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Appl Catal B. 2014;144:152.

    Article  CAS  Google Scholar 

  35. Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K. Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl Catal A. 2000;200(1–2):211.

    Article  CAS  Google Scholar 

  36. Sasikala R, Gupta NM, Kulshreshtha SK. Temperature-programmed reduction and CO oxidation studies over Ce-Sn mixed oxides. Catal Lett. 2001;71(1–2):69.

    Article  CAS  Google Scholar 

  37. Zhong YJ, Lin R, Luo MF, Liu WP. Study of Ce0.7Sn0.3O2 supported PdO catalysts for CO oxidation. React Kinet Catal Lett. 2003;79(1):53.

    Article  CAS  Google Scholar 

  38. Lin R, Zhong Y, Luo M. Structure and redox properties of CexSn1−xO2 mixed oxides. Indian J Chem A. 2001;40(1):36.

    Google Scholar 

  39. Weber IT, Valentini A, Probst LFD, Longo E, Leite ER. Catalytic activity of nanometric pure and rare earth-doped SnO2 samples. Mater Lett. 2008;62(10–11):1677.

    Article  CAS  Google Scholar 

  40. Weber IT, Valentini A, Probst LFD, Longo E, Leite ER. Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems. Sens Actuators B-Chem. 2004;97(1):31.

    Article  CAS  Google Scholar 

  41. Aškrabić S, Dohčević-Mitrović Z, Kremenović A, Lazarević N, Kahlenberg V, Popović ZV. Oxygen vacancy-induced microstructural changes of annealed CeO2−x nanocrystals. J Raman Spectrosc. 2012;43(1):76.

    Article  CAS  Google Scholar 

  42. Sangeetha P, Sasirekha V, Ramakrishnan V. Micro-Raman investigation of tin dioxide nanostructured material based on annealing effect. J Raman Spectrosc. 2011;42(8):1634.

    Article  CAS  Google Scholar 

  43. Choudhury S, Sasikala R, Saxena V, Aswal DK, Bhattacharya D. A new route for the fabrication of an ultrathin film of a PdO–TiO2 composite photocatalyst. Dalton T. 2012;41(39):12090.

    Article  CAS  Google Scholar 

  44. Lin W, Zhu YX, Wu NZ, Xie YC, Murwani I, Kemnitz E. Total oxidation of methane at low temperature over Pd/TiO2/Al2O3: effects of the support and residual chlorine ions. Appl Catal B-Environ. 2004;50(1):59.

    Article  CAS  Google Scholar 

  45. Liu ZM, Oh KS, Woo SI. Novel Sn–Ce/Al2O3 catalyst for the selective catalytic reduction of NOx under lean conditions. Catal Lett. 2006;106(1–2):34.

    Google Scholar 

  46. Meng L, Lin JJ, Pu ZY, Luo LF, Jia AP, Huang WX, Luo MF, Lu JQ. Identification of active sites for CO and CH4 oxidation over PdO/Ce1−xPdxO2−δ catalysts. Appl Catal B-Environ. 2012;119–120:117.

    Article  CAS  Google Scholar 

  47. Zhang N, Liu S, Fu X, Xu YJ. A simple strategy for fabrication of “Plum-Pudding” type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation. J Phys Chem C. 2011;115(46):22901.

    Article  CAS  Google Scholar 

  48. Corro G, Vazquez-Cuchillo O, Banuelos F, Cruz-Lopez A, Fierro JLG. The effect of Sn on the electronic state of M/gamma-Al2O3(M = Pd, Pt) catalysts and the influence in the catalytic combustion of methane. J Ceram Process Res. 2008;9(6):611.

    Google Scholar 

  49. Larese C, Granados ML, Mariscal R, Fierro JLG, Lambrou PS, Efstathiou AM. The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce-Zr-O metal oxides modified by phosphorus incorporation. Appl Catal B-Environ. 2005;59(1–2):13.

    Article  CAS  Google Scholar 

  50. Zhao MW, Shen MQ, Wen XM, Wang J. Ce-Zr-Sr ternary mixed oxides structural characteristics and oxygen storage capacity. J Alloys Compd. 2008;457(1–2):578.

    Article  CAS  Google Scholar 

  51. Widjaja H, Sekizawa K, Eguchi K, Arai H. Oxidation of methane over Pd/mixed oxides for catalytic combustion. Catal Today. 1999;47(1–4):95.

    Article  CAS  Google Scholar 

  52. Widjaja H, Sekizawa K, Eguchi K, Arai H. Oxidation of methane over Pd-supported catalysts. Catal Today. 1997;35(1–2):197.

    Article  CAS  Google Scholar 

  53. Bozo C, Guilhaume N, Herrmann JM. Role of the ceria-zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions. J Catal. 2001;203(2):393.

    Article  CAS  Google Scholar 

  54. Becker E, Carlsson PA, Skoglundh M. Methane oxidation over alumina and ceria supported platinum. Top Catal. 2009;52(13–20):1957.

    Article  CAS  Google Scholar 

  55. Wang JG, Liu CJ. Density functional theory study of methane activation over PdO/HZSM-5. J Mol Catal A: Chem. 2006;247(1–2):199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300), the National Key Basic Research Program of China (No. 2013CB933200) and Science and Technology Commission of Shanghai Municipality (No. 16ZR1407900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Cheng Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Lin, JP., Xia, Q. et al. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 38, 107–114 (2019). https://doi.org/10.1007/s12598-018-1081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1081-3

Keywords

Navigation