Skip to main content
Log in

BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

BiCuSeO-based thermoelectric material has attracted great attention as state-of-the-art thermoelectric materials since it was first reported in 2010. In this review, we update the studies on the BiCuSeO thin films first. Then, we focus on the most recent progress of multiple approaches that enhance the thermoelectric performance including advanced synthesized technologies, notable mechanisms for higher power factor (optimizing carrier concentration, carrier mobility, Seebeck coefficient) and doping effects predicted by calculation. And finally, aiming at further enhancing the performance of these materials and ultimately commercial application, we give a brief discussion on the urgent issues to which should be paid close attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission of Ref. [30]. Copyright (2017): Royal Society of Chemistry

Fig. 3

Reproduced with permission of Ref. [31]. Copyright (2017): Wiley Company

Fig. 4

Reproduced with permission of Ref. [34]. Copyright (2015): Royal Society of Chemistry

Fig. 5

Reproduced with permission of Ref. [44]. Copyright (2016): Wiley Company

Fig. 6

Reproduced with permission of Refs. [4, 46, 48]. Copyright (2017): American Association for Advancement of Science; Copyright (2015): Royal Society of Chemistry; Copyright (2017): Royal Society of Chemistry

Fig. 7

Reproduced with permission of Ref [50]. Copyright (2017): Elsevier

Fig. 8

Reproduced with permission of Ref. [52]. Copyright (2015): American Chemical Society

Fig. 9

Reproduced with permission of Refs. [54, 51]. Copyright (2013): Royal Society of Chemistry; Copyright (2017): Elsevier

Fig. 10

Reproduced with permission of Ref. [56]. Copyright (2015): AIP Publishing LLC

Fig. 11

Reproduced with permission of Ref. [57]. Copyright (2014): American Chemical Society

Fig. 12

Reproduced with permission of Ref. [58]. Copyright (2013): The Royal Society of Chemistry

Fig. 13

Reproduced with permission of Ref. [59]. Copyright (2017): Royal Society of Chemistry

Fig. 14

Reproduced with permission of Ref. [61]. Copyright (2017): American Chemical Society

Fig. 15

Reproduced with permission of Ref. [66]. Copyright (2017): Royal Society of Chemistry

Similar content being viewed by others

References

  1. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    Article  Google Scholar 

  2. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  Google Scholar 

  3. Shakouri A. Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res. 2011;41(1):399.

    Article  Google Scholar 

  4. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017;357(6358):eaak9997.

    Article  Google Scholar 

  5. Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Adv Mater. 2017;29(20):1602013.

    Article  Google Scholar 

  6. Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211.

    Article  Google Scholar 

  7. Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater. 2015;5(17):1500411.

    Article  Google Scholar 

  8. Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.

    Article  Google Scholar 

  9. Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater. 2011;21(2):241.

    Article  Google Scholar 

  10. Wu CF, Wang H, Yan Q, Wei TR, Li JF. Doping of thermoelectric PbSe with chemically inert secondary phase nanoparticles. J Mater Chem C. 2017;5(41):10881.

    Article  Google Scholar 

  11. Zhang K, Zhang Q, Wang L, Jiang W, Chen L. Enhanced thermoelectric performance of Se-doped PbTe bulk materials via nanostructuring and multi-scale hierarchical architecture. J Alloys Compd. 2017;725(S):563.

    Google Scholar 

  12. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc. 2011;133(20):7837.

    Article  Google Scholar 

  13. Koumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R. Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res. 2010;40(1):363.

    Article  Google Scholar 

  14. He J, Liu Y, Funahashi R. Oxide thermoelectrics: the challenges, progress, and outlook. J Mater Res. 2011;26(15):1762.

    Article  Google Scholar 

  15. Zhao LD, Berardan D, Pei YL, Byl C, Pinsard-Gaudart L, Dragoe N. Bi1−xSr x CuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett. 2010;97(9):092118.

    Article  Google Scholar 

  16. Lan JL, Zhan B, Liu YC, Zheng B, Liu Y, Lin YH, Nan CW. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl Phys Lett. 2013;102(12):123905.

    Article  Google Scholar 

  17. Jingxuan D, Ben X, Yuanhua L, Cewen N, Wei L. Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New J Phys. 2015;17(8):083012.

    Article  Google Scholar 

  18. Saha SK. Exploring the origin of ultralow thermal conductivity in layered BiOCuSe. Phys Rev B. 2015;92(4):041202.

    Article  Google Scholar 

  19. Vaqueiro P, Al Orabi RAR, Luu SDN, Guelou G, Powell AV, Smith RI, Song JP, Wee D, Fornari M. The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter? Phys Chem Chem Phys. 2015;17(47):31735.

    Article  Google Scholar 

  20. Ji HS, Togo A, Kaviany M, Tanaka I, Shim JH. Low phonon conductivity of layered BiCuOS, BiCuOSe, and BiCuOTe from first principles. Phys Rev B. 2016;94(11):115203.

    Article  Google Scholar 

  21. Kumar S, Schwingenschlogl U. Lattice thermal conductivity in layered BiCuSeO. Phys Chem Chem Phys. 2016;18(28):19158.

    Article  Google Scholar 

  22. Zhao LD, He J, Berardan D, Lin Y, Li JF, Nan CW, Dragoe N. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci. 2014;7(9):2900.

    Article  Google Scholar 

  23. Zhang X, Chang C, Zhou Y, Zhao LD. BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials (Basel). 2017;10(2):198.

    Article  Google Scholar 

  24. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597.

    Article  Google Scholar 

  25. Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater. 2007;6(2):129.

    Article  Google Scholar 

  26. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    Article  Google Scholar 

  27. Boyer A, Cissé E. Properties of thin film thermoelectric materials: application to sensors using the Seebeck effect. Mater Sci Eng B. 1992;13(2):103.

    Article  Google Scholar 

  28. Mzerd A, Aboulfarah B, Giani A, Boyer A. Elaboration and characterization of MOCVD (Bi1−xSb x )2Te3 thin films. J Mater Sci. 2006;41(5):1659.

    Article  Google Scholar 

  29. Scheele M, Oeschler N, Veremchuk I, Reinsberg K-G, Kreuziger A-M, Kornowski A, Kornowski A, Broekaert J, Klinke C, Weller H. ZT enhancement in solution-grown Sb(2−x)Bi x Te3 nanoplatelets. ACS Nano. 2010;4(7):4283.

    Article  Google Scholar 

  30. Wu X, Wang JL, Zhang H, Wang S, Zhai S, Li Y, Elhadj D, Fu G. Epitaxial growth and thermoelectric properties of c-axis oriented Bi1−xPb x CuSeO single crystalline thin films. CrystEngComm. 2015;17(45):8697.

    Article  Google Scholar 

  31. Wu X, Gao L, Roussel P, Dogheche E, Wang J, Fu G, Wang S. Growth of c-axis-oriented BiCuSeO thin films directly on Si wafers. J Am Ceram Soc. 2016;99(10):3367.

    Article  Google Scholar 

  32. Fan H, Su T, Li H, Li S, Hu M, Liu B, Du B, Ma H, Jia X. Enhanced low temperature thermoelectric performance and weakly temperature-dependent figure-of-merit values of PbTe–PbSe solid solutions. J Alloys Compd. 2016;658(S):885.

    Article  Google Scholar 

  33. Su T, Jia X, Ma H, Yu F, Tian Y, Zuo G, Zheng Y, Jiang Y, Dong D, Deng L, Qin B, Zheng S. Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature. J Appl Phys. 2009;105(7):073713.

    Article  Google Scholar 

  34. Sun H, Jia X, Deng L, Lv P, Guo X, Zhang Y, Sun B, Liu B, Ma H. Effect of HPHT processing on the structure, and thermoelectric properties of Co4Sb12 co-doped with Te and Sn. J Mater Chem A. 2015;3(8):4637.

    Article  Google Scholar 

  35. Zhu H, Su T, Li H, Pu C, Zhou D, Zhu P, Wang X. High pressure synthesis, structure and thermoelectric properties of BiCuChO (Ch = S, Se, Te). J Eur Ceram Soc. 2017;37(4):1541.

    Article  Google Scholar 

  36. Fan FJ, Yu B, Wang YX, Zhu YL, Liu XJ, Yu SH, Ren Z. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. J Am Chem Soc. 2011;133(40):15910.

    Article  Google Scholar 

  37. Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M. The sol–gel route to advanced silica-based materials and recent applications. Chem Rev. 2013;113(8):6592.

    Article  Google Scholar 

  38. Bhaskar A, Lai RT, Chang KC, Liu CJ. High thermoelectric performance of BiCuSeO prepared by solid state reaction and sol–gel process. Scr Mater. 2017;134:100.

    Article  Google Scholar 

  39. Li J, Sui J, Pei Y, Barreteau C, Berardan D, Dragoe N, Cai W, He J, Zhao LD. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci. 2012;5(9):8543.

    Article  Google Scholar 

  40. Liu Y, Zhao LD, Liu Y, Lan J, Xu W, Li F, Zhang BP, Berardan D, Dragoe N, Lin YH, Nan CW, Li JF, Zhu H. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc. 2011;133(50):20112.

    Article  Google Scholar 

  41. Li F, Li JF, Zhao LD, Xiang K, Liu Y, Zhang BP, Lin YH, Nan CW, Zhu H. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci. 2012;5(5):7188.

    Article  Google Scholar 

  42. Lan JL, Liu YC, Zhan B, Lin YH, Zhang B, Yuan X, Zhang W, Xu W, Nan CW. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater. 2013;25(36):5086.

    Article  Google Scholar 

  43. Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying. Mater Sci Eng A. 2001;304–306(S):151.

    Article  Google Scholar 

  44. Wu J, Li F, Wei TR, Ge Z, Kang F, He J, Li JF. Mechanical alloying and spark plasma sintering of BiCuSeO oxyselenide: synthesis process and thermoelectric properties. J Am Ceram Soc. 2016;99(2):507.

    Article  Google Scholar 

  45. Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, Cheng X, Yang D, Chi H, Tang X, Zhang Q, Uher C. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun. 2014;5:4908.

    Article  Google Scholar 

  46. Ren GK, Lan JL, Butt S, Ventura KJ, Lin YH, Nan CW. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Adv. 2015;5(85):69878.

    Article  Google Scholar 

  47. Luu SDN, Vaqueiro P. Synthesis, structural characterisation and thermoelectric properties of Bi1−xPb x OCuSe. J Mater Chem A. 2013;1(39):12270.

    Article  Google Scholar 

  48. Ren GK, Wang SY, Zhu YC, Ventura KJ, Tan X, Xu W, Lin YH, Yang J, Nan CW. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ Sci. 2017;10(7):1590.

    Article  Google Scholar 

  49. Li F, Wei TR, Kang F, Li JF. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J Mater Chem A. 2013;1(38):11942.

    Article  Google Scholar 

  50. Lan JL, Deng C, Ma W, Ren GK, Lin YH, Yang X. Ultra-fast synthesis and high thermoelectric properties of heavy sodium doped BiCuSeO. J Alloy Compd. 2017;708:955.

    Article  Google Scholar 

  51. Lan JL, Ma W, Deng C, Ren GK, Lin YH, Yang X. High thermoelectric performance of Bi1−xK x CuSeO prepared by combustion synthesis. J Mater Sci. 2017;52(19):11569.

    Article  Google Scholar 

  52. Li Z, Xiao C, Fan S, Deng Y, Zhang W, Ye B, Xie Y. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc. 2015;137(20):6587.

    Article  Google Scholar 

  53. Hiramatsu H, Yanagi H, Kamiya T, Ueda K, Hirano M, Hosono H. Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M = Bi, La; Ch = S, Se, Te): effects of electronic configurations of M3+ ions. Chem Mater. 2008;20(1):326.

    Article  Google Scholar 

  54. Liu Y, Lan J, Xu W, Liu Y, Pei YL, Cheng B, Liu DB, Lin YH, Zhao LD. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem Commun (Camb). 2013;49(73):8075.

    Article  Google Scholar 

  55. Feng B, Li G, Hou Y, Zhang C, Jiang C, Hu J, Xiang Q, Li Y, He Z, Fan X. Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap. J Alloy Compd. 2017;712:386.

    Article  Google Scholar 

  56. Liu Y, Ding J, Xu B, Lan J, Zheng Y, Zhan B, Zhang B, Lin Y, Nan C. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl Phys Lett. 2015;106(23):233903.

    Article  Google Scholar 

  57. Pei YL, Wu H, Wu D, Zheng F, He J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc. 2014;136(39):13902.

    Article  Google Scholar 

  58. Sui J, Li J, He J, Pei YL, Berardan D, Wu H, Dragoe N, Cai W, Zhao LD. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci. 2013;6(10):2916.

    Article  Google Scholar 

  59. Wen Q, Chang C, Pan L, Li X, Yang T, Guo H, Wang Z, Zhang J, Xu F, Zhang Z, Tang G. Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. J Mater Chem A. 2017;5(26):13392.

    Article  Google Scholar 

  60. Wang Y, Rogado NS, Cava RJ, Ong NP. Spin entropy as the likely source of enhanced thermopower in Na x Co2O4. Nature. 2003;423(6938):425.

    Article  Google Scholar 

  61. Shen J, Chen Y. Silicon as an unexpected n-type dopant in BiCuSeO thermoelectrics. ACS Appl Mater Interfaces. 2017;9(33):27372.

    Article  Google Scholar 

  62. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    Article  Google Scholar 

  63. Yu B, Zhang Q, Wang H, Wang X, Wang H, Wang D, Wang H, Snyder GJ, Chen G, Ren ZF. Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing. J Appl Phys. 2010;108(1):016104.

    Article  Google Scholar 

  64. Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci. 2012;5(1):5246.

    Article  Google Scholar 

  65. Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci. 2012;5(2):5510.

    Article  Google Scholar 

  66. Shen J, Yu H, Pei Y, Chen Y. Resonant doping in BiCuSeO thermoelectrics from first principles. J Mater Chem A. 2017;5(3):931.

    Article  Google Scholar 

  67. Zhou Z, Tan X, Ren G, Lin Y, Nan C. Thermoelectric properties of Cl-doped BiCuSeO oxyselenides. J Electron Mater. 2017;46(5):2593.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research Programme of China (No. 2016YFA0201003), the National Basic Research Program of China (No. 2013CB632506), the National Natural Science Foundation of China (No. 51772016), the National Natural Science Foundation of China (Nos. 51672155, 51532003) and China Postdoctoral Science Foundation (No. 2016M601020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Tan, X., Liu, YC. et al. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met. 37, 259–273 (2018). https://doi.org/10.1007/s12598-018-1006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1006-1

Keywords

Navigation