Skip to main content
Log in

Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

7055 aluminum alloy plates with the same size were rolled by two processes: small percentage reduction per pass (PRPP) and large percentage reduction per pass, respectively. Meanwhile, the effect of PRPP on the precipitates and corrosion resistance of 7055 aluminum alloy plate was investigated. The mechanisms were analyzed and discussed by optical microscopy (OM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and electron back-scattered diffraction (EBSD) technique. Large PRPP can improve the corrosion resistance. For the plate rolled by small PRPP, the main precipitate is guinier–preston (GP) zone and continuous grain boundary precipitates (GBPs), while, for the plate rolled by large PRPP, the main precipitates are the GP zone and η′ precipitate, and the GBPs are discontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wen K, Fan YQ, Wang GJ, Jin LB, Li XW, Li ZH, Zhang YA, Xiong BQ. Aging behavior and precipitate characterization of a high Zn-containing Al–Zn–Mg–Cu alloy with various tempers. Mater Des. 2016;101(16):23.

    Google Scholar 

  2. Zhang XM, Deng YL, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials. Acta Metall Sinica. 2015;51(3):257.

    Google Scholar 

  3. Yu LP, Ruan PY. Production technology and application for high quality aluminum alloy plate. Nonferrous Met Process. 2011;40(2):19.

    Google Scholar 

  4. Zuo JR, Hou LG, Shi JT, Hua C, Zhuang LZ, Zhang JS. Precipitates and the evolution of grain structures during double-step rolling of high-strength aluminum alloy and related properties. Acta Metall Sinica. 2016;52(9):1105.

    Google Scholar 

  5. Zhang XM, Han NM, Liu SD, Song FX, Zeng RL, Huang LY. In homogeneity of texture, tensile property and fracture toughness of 7050 aluminum alloy thick plate. Chin J Nonferrous Met. 2010;2(2):202.

    Google Scholar 

  6. Lin LH, Li ZY, Han XN, Chen X, Li Y. Recrystallization behavior of hot-rolled Al–Zn–Mg–Cu alloy after great deformation. J Cent South Univer (Sci Technol). 2011;42(10):1990.

    Google Scholar 

  7. Yan LM, Shen J, Li ZB, Li JP. Effect of deformation temperature on microstructure and mechanical properties of 7055 aluminum alloy after heat treatment. T Nonferr Metal Soc. 2013;23(6):625.

    Article  Google Scholar 

  8. Li JP, Shen J, Yan XD, Mao BP, Yan LM. Effect of temperature on microstructure evolution of 7075 alloy during hot deformation. Chin J Nonferrous Met. 2008;18(11):1951.

    Google Scholar 

  9. Li DF, Zhang XM, Liu SD, Yin BW, Lei Y. Effect of rolling deformation on microstructure and mechanical properties of AI-5Zn-3 Mg-1Cu Alloy. J South China Univ Technol. 2015;43(11):75.

    Google Scholar 

  10. Ren WC, Peng GS, Chen KH, Chen SY, Liu XD. Effect of rolling deformation on microstructure mechanical and corrosion properties of Al–Zn–Mg–Cu alloy. Mater Sci Eng Powder Metal. 2013;18(6):806.

    Google Scholar 

  11. Sidor J, Petrov RH, Kestens LA. Microstructural and texture changes in severely deformed aluminum alloys. Mater Charact. 2011;62(3):228.

    Article  Google Scholar 

  12. Zhao XD, Lv RL, Lin JB, Chen HQ. Effects of deformation modes on texture evolution during hot working of Al–Zn–Mg–Cu–Zr alloy. J Wuhan Univ Technol Mater Sci Ed. 2016;31(3):616.

    Article  Google Scholar 

  13. Mondal CD, Singh AK, Mukhopadhyay AK, Chattopadhyay K. Effects of different modes of hot cross-rolling in 7010 aluminum alloy: part I. Evolution of microstructure and texture. Metall Mater Trans A. 2013;44A(6):2745.

    Google Scholar 

  14. Ma CQ, Hou LG, Zhang JS, Zhuang LZ. Influence of thickness reduction per pass on strain, microstructures and mechanical properties of 7050 Al alloy sheet processed by asymmetric rolling. Mater Sci Eng A. 2016;650(16):454.

    Article  Google Scholar 

  15. Pérez-Prado MT, DelValle JA, Contreras JM, Ruano OA. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Mater. 2004;50(5):661.

    Article  Google Scholar 

  16. Del-Valle JA, Pérez-Prado MT, Ruano OA. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater Sci Eng A. 2003;355(1):68.

    Article  Google Scholar 

  17. Berg LK, Gjønnes J, Hansen V. GP-Zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001;49(17):3443.

    Article  Google Scholar 

  18. Lin YC, Zhang JL, Chen MS. Evolution of precipitates during two-stage stress-aging of an Al–Zn–Mg–Cu alloy. J Alloys Compd. 2016;684(5):177.

    Article  Google Scholar 

  19. Dumont M, Lefebvre W, Doisneau-Cottignies B, Deschamps A. Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy. Acta Mater. 2005;53(10):2881.

    Article  Google Scholar 

  20. Fan YQ, Wen K, Li ZH, Li XW, Zhang YA, Xiong BQ, Xie JX. Microstructure of as-extruded 7136 aluminum alloy and its evolution during solution treatment. Rare Met. 2017;36(4):256.

    Article  Google Scholar 

  21. Peng XY, Guo Q, Liang XP, Deng Y, Gu Y, Xu GF, Yin ZM. Mechanical properties corrosion behavior and microstructures of a nonisothermal ageing treated Al–Zn–Mg–Cu alloy. Mater Sci Eng A. 2017;688(17):146.

    Article  Google Scholar 

  22. Wang SS, Jiang JT, Fan GH, Panindre AM, Frankel GS, Zhen L. Accelerated precipitation and growth of phases in an Al–Zn–Mg–Cu alloy processed by surface abrasion. Acta Mater. 2017;131(1):233.

    Article  Google Scholar 

  23. Huang LP, Chen K, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy. Mater Sci Eng B. 2012;177(12):862.

    Article  Google Scholar 

  24. Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater. 2010;58(10):248.

    Article  Google Scholar 

  25. Xu D, Birbilis N, Rometsch PA. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150. Corros Sci. 2012;54(1):17.

    Article  Google Scholar 

  26. Marlaud T, Malki B, Henon C, Deschamps A, Barou B. Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys. Corros Sci. 2011;53(10):3139.

    Article  Google Scholar 

  27. Lin LH, Liu ZY, Li Y, Han XN, Chen X. Effects of severe cold rolling on exfoliation corrosion behavior of Al–Zn–Mg–Cu–Cr Alloy. J Mater Eng Perform. 2012;21(6):1070.

    Google Scholar 

  28. Peng GS, Chen KH, Fang HC, Chen SY, Chao H. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy. Mater Des. 2011;62(1):35.

    Google Scholar 

  29. Krishna KG, Das G, Venkateswarlu K, Hari Kumar KC. Studies on aging and corrosion properties of cryorolled Al–Zn–Mg–Cu (AA7075) Alloy. Trans Indian Inst Met. 2017;70(3):817.

    Article  Google Scholar 

  30. Fang HC, Chao H, Chen KH. Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy. J Alloys Compd. 2015;622(12):166.

    Article  Google Scholar 

  31. Knight SP, Birbilis N, Muddle BC, Trueman AR, Lync SP. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys. Corros Sci. 2010;52(17):4073.

    Article  Google Scholar 

  32. Lin YC, Jiang YQ. Effect of creep-aging processing on corrosion resistance of an Al–Zn–Mg–Cu alloy. Mater Des. 2014;61(1):228.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Higher School Science Foundation of Inner Mongolia (No. NJZZ16082), the National Natural Science Foundation of China (Nos. 51764043, 51461017 and 51364027) and the Science Program for Returned Chinese Scholars supported by Inner Mongolia and the Scientific and Technological Program of Innovation and Guidance of Inner Mongolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Ming Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Yan, LM., Hou, XH. et al. Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes. Rare Met. 37, 381–387 (2018). https://doi.org/10.1007/s12598-017-0996-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0996-4

Keywords

Navigation